Goodwillie calculus and operads

Michael Ching (Amherst College)

Operad Popup Conference 11 August 2020

Dedicated to Trudie Ching on her birthday

Higher Chain Rule: the Faà di Bruno formula

Definition

A smooth function $f : \mathbb{R} \to \mathbb{R}$ has Taylor series, expanded at 0:

$$f(x) = \partial_0 f + \partial_1 f(x) + \frac{\partial_2 f(x,x)}{2} + \dots + \frac{\partial_n f(x,\dots,x)}{n!} + \dots$$

where

$$\partial_n f(x_1,\ldots,x_n)=f^{(n)}(0)x_1\cdots x_n.$$

Theorem (Arbogast, 1800; Faà di Bruno, 1857)

 $f,g:\mathbb{R} o\mathbb{R}$ smooth; f(0)=g(0)=0:

$$\partial_n(gf) = \sum_{n=n_1+\cdots+n_k} \partial_k g(\partial_{n_1} f, \ldots, \partial_{n_k} f)$$

i.e.

$$\partial_*(gf) = \partial_*(g) \circ \partial_*(f).$$

Goodwillie Calculus: Taylor tower

Theorem (Goodwillie, 2003)

 $F: \mathcal{C} \to \mathcal{D}$, functor between suitable ∞ -categories, has a Taylor tower:

$$F \rightarrow \cdots \rightarrow P_n F \rightarrow P_{n-1} F \rightarrow \cdots \rightarrow P_1 F \rightarrow P_0 F$$

where P_nF is the universal n-excisive approximation to F.

E.g. F is 1-excisive if it takes pushouts in \mathbb{C} to pullbacks in \mathbb{D} .

Examples

(1) $Id: S_* \to S_*$ has a non-trivial Taylor tower:

$$P_1(Id)(X) \simeq \Omega^{\infty} \Sigma^{\infty}(X).$$

(2) $Id : Sp \rightarrow Sp \text{ is } 1\text{-excisive.}$

Goodwillie Calculus: Derivatives

Theorem (Goodwillie, 2003)

 $F: \mathcal{C} \to \mathfrak{D}$; functor between suitable pointed ∞ -categories. Then the layer of the Taylor tower $D_nF:=\mathsf{hofib}(P_nF \to P_{n-1}F)$ is given by

$$D_n F(X) \simeq \Omega^{\infty} \partial_n F(\Sigma^{\infty} X, \dots, \Sigma^{\infty} X)_{h\Sigma_n}$$

for a symmetric multilinear functor $\partial_n F : \mathsf{Sp}(\mathfrak{C})^n \to \mathsf{Sp}(\mathfrak{D})$, the *nth* derivative of F.

Example

(Arone-Mahowald, 1999): $\mathit{Id}: \mathbb{S}_* \to \mathbb{S}_*$ has derivatives the 'Lie operad'

$$\partial_n(Id): \operatorname{Sp}^n \to \operatorname{Sp}; \quad (E_1, \dots, E_n) \mapsto \operatorname{Lie}(n) \wedge E_1 \wedge \dots \wedge E_n$$

(Kuhn, 2006; McCarthy, 2001): $\Sigma^\infty\Omega^\infty:\mathsf{Sp}\to\mathsf{Sp}$ has derivatives given by the 'commutative cooperad'

$$\partial_n(\Sigma^{\infty}\Omega^{\infty}): \operatorname{Sp}^n \to \operatorname{Sp}; \quad (E_1, \dots, E_n) \mapsto \operatorname{Com}(n) \wedge E_1 \wedge \dots \wedge E_n.$$

Theorem (C., 2010 (for Sp); Bauer et al., 2018 (for chain complexes))

 $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{D} \to \mathcal{E}$: reduced functors with \mathcal{D} stable. Then

$$\partial_*(GF) \simeq \partial_*(G) \circ \partial_*(F).$$

Corollary (Arone-C., 2011 (for $\mathcal{C} = \mathcal{S}_*$); not written down in general)

For any (pointed compactly-generated) ∞ -category \mathcal{C} , the adjunction $\Sigma^{\infty}:\mathcal{C}\rightleftarrows \mathsf{Sp}(\mathcal{C}):\Omega^{\infty}$ gives rise to a comonad

$$\Sigma^{\infty}\Omega^{\infty}: \mathsf{Sp}(\mathfrak{C}) \to \mathsf{Sp}(\mathfrak{C})$$

and hence a cooperad $\partial_*(\Sigma^\infty\Omega^\infty)$ with structure map

$$\partial_*(\Sigma^\infty\Omega^\infty) \to \partial_*(\Sigma^\infty\Omega^\infty\Sigma^\infty\Omega^\infty) \simeq \partial_*(\Sigma^\infty\Omega^\infty) \circ \partial_*(\Sigma^\infty\Omega^\infty)$$

Example (Arone-C., 2011)

For $\mathcal{C}=\mathcal{S}_*\colon \, \partial_*(\Sigma^\infty\Omega^\infty)$ is the commutative cooperad.

∞-Operads and Functor-(Co)Operads

Definition

A stable ∞-operad O is a Sp-enriched symmetric multicategory:

- collection of objects ob 0;
- spectra $\mathcal{O}(c_1,\ldots,c_n;d)$ for $c_1,\ldots,c_n,d\in\mathrm{ob}\,\mathcal{O}$, for $n\geq 1$;
- composition/unit/symmetry maps s.t. diagrams commute;
- **also**: underlying ∞ -category 0 < 1 is stable. (E.g. $0 < 1 = \operatorname{Sp}^{fin}$.)

We say O is corepresented on C if

ob
$$O = ob \, C$$
, $O(c_1, \ldots, c_n; d) \simeq \mathsf{Map}_{C}(F_n(c_1, \ldots, c_n), d)$

for some $(F_n: \mathbb{C}^n \to \mathbb{C})$; in which case we have natural transformations

$$F_{n_1+\cdots+n_k} \to F_k(F_{n_1},\ldots,F_{n_k}), \quad F_1 \to Id$$

that make (F_n) into a functor-cooperad on \mathbb{C} . A functor-operad on \mathbb{C} is a functor cooperad on \mathbb{C}^{op} .

Goodwillie Derivatives and Operads I

Lemma

The multilinearization of the n-fold cartesian product functor

$$\times : \mathbb{C}^n \to \mathbb{C}$$

is

$$\partial_n(\Sigma^\infty\Omega^\infty): \operatorname{Sp}(\mathfrak{C})^n \to \operatorname{Sp}(\mathfrak{C})$$

Definition (Lurie, HA.6.2)

There is a functor-cooperad structure on $\partial_*(\Sigma^\infty\Omega^\infty)$ by multilinearizing the functor-cooperad structure on \times given by maps of the form

$$\times (X_1, X_2, X_3, X_4, X_5) \xrightarrow{\sim} \times (\times (X_1, X_2), \times (X_3, X_4, X_5)).$$

Theorem (Heuts, 2015)

We can approximate objects in ${\mathbb C}$ via Tate $\partial_*(\Sigma^\infty\Omega^\infty)$ -coalgebras.

Goodwillie Derivatives and Operads II: Koszul Duality

Lemma (Arone-C., 2011 (for S_*); see Arone-Kankaanrinta, 1998)

For a (pointed compactly-generated) ∞ -category \mathcal{C} , we have

$$egin{aligned} \partial_*(\mathit{Id}) &\simeq \mathsf{Tot}(\partial_*(\Omega^\infty(\Sigma^\infty\Omega^\infty)^ullet\Sigma^\infty) \ &\simeq \mathsf{Tot}(\partial_*(\Omega^\infty) \circ \partial_*(\Sigma^\infty\Omega^\infty)^ullet \circ \partial_*(\Sigma^\infty)) \ &\simeq \mathsf{Cobar}(1,\partial_*(\Sigma^\infty\Omega^\infty),1) \end{aligned}$$

Conjecture (C., 2012, for operads in Sp; not written down in general)

There is a functor-operad structure on $\partial_*(Id)$ given by applying bar-cobar duality for stable ∞ -operads to the functor-cooperad $\partial_*(\Sigma^\infty\Omega^\infty)$.

Examples

- (1) (Arone-C., 2011) $\mathcal{C} = \mathcal{S}_*$: $\partial_*(Id) \simeq \text{Lie}$
- (2) (Clark, 2020) $\mathcal{C} = \mathsf{Alg}_{\mathcal{O}}$ for an operad \mathcal{O} in Sp: $\partial_*(Id) \simeq \mathcal{O}$

Goodwillie Derivatives and Operads III: Day Convolution

Definition (Glasman, 2016 for monoidal ∞-categories)

 $\mathfrak{F}_{\mathfrak{C}} \colon \infty\text{-category of reduced functors } \mathfrak{C} \to \mathsf{Sp}$

The Day convolution of

$$A, B : \mathfrak{F}_{\mathfrak{C}} \to \mathsf{Sp}$$

is the left Kan extension

Theorem (C., 2020)

For $X_1, \ldots, X_n \in Sp(\mathfrak{C})$, we have

$$\partial_n(-)(X_1,\ldots,X_n)\simeq\partial_1(-)(X_1)\otimes\cdots\otimes\partial_1(-)(X_n):\mathfrak{F}_{\mathfrak{C}}\to\mathsf{Sp}.$$

Derivatives of the Identity and Day Convolution

Theorem (C., 2020)

The derivatives of the identity functor on ${\mathfrak C}$ corepresent the coendomorphism operad of $\partial_1:{\mathfrak F}_{\mathfrak C}\to \operatorname{Sp}$. That is:

$$\mathsf{Map}_{\mathsf{Sp}(\mathfrak{C})}(Y,\partial_n(Id_{\mathfrak{C}})(X_1,\ldots,X_n))$$

 \simeq

$$\mathsf{Map}_{[\mathfrak{F}_e,\mathsf{Sp}]}(\partial_1(-)(Y),\partial_1(-)(X_1)\otimes\cdots\otimes\partial_1(-)(X_n))$$

for $X_1, \ldots, X_n, Y \in Sp(\mathcal{C})$.

So we have a stable ∞ -operad $\mathfrak{I}_{\mathfrak{C}}$, given by

$$\mathfrak{I}_{\mathfrak{C}}(X_1,\ldots,X_n;Y)\simeq \mathsf{Map}_{\mathsf{Sp}(\mathfrak{C})}(Y,\partial_n(Id_{\mathfrak{C}})(X_1,\ldots,X_n))$$

i.e. corepresented on $Sp(\mathcal{C})^{op}$, i.e. $\partial_*(Id)$ is a functor-operad on $Sp(\mathcal{C})$.

Derivatives of Other Functors and Day Convolution

Theorem (C., 2020)

More generally, for $F: \mathcal{C} \to \mathfrak{D}$:

$$\mathsf{Map}_{\mathsf{Sp}(\mathfrak{D})}(Y,\partial_n(F)(X_1,\ldots,X_n))$$

 \sim

$$\mathsf{Map}_{[\mathcal{F}_{\mathcal{D}},\mathsf{Sp}]}(\partial_1(-)(Y),\partial_n(-F)(X_1,\ldots,X_n))$$

which are the terms of a $(\mathfrak{I}_{\mathfrak{D}},\mathfrak{I}_{\mathfrak{C}})$ -bimodule \mathfrak{M}_F , corepresented by the derivatives of F.

Algebras over a Stable $\infty ext{-}\mathsf{Operad}$

Definition

 \mathbb{O} : (small) stable ∞ -operad. An \mathbb{O} -algebra A in \mathbb{S} p consists of:

- a spectrum A(c) for each $c \in ob \ 0$;
- structure maps

$$\mathcal{O}(c_1,\ldots,c_n;d)\wedge A(c_1)\wedge\ldots\wedge A(c_n)\to A(d)$$

s.t. $A: \mathcal{O}_{\leq 1} \to \mathsf{Sp}$ is an exact functor (preserves finite (co)limits).

Denote by $Alg_{\mathcal{O}}$ the ∞ -category of \mathcal{O} -algebras in Sp.

Question

What is the stable ∞ -operad $\mathfrak{I}_{Alg_{\mathfrak{O}}}$?

Stabilization of Alg₍₂₎

Theorem (Basterra-Mandell, 2005)

0: small stable ∞ -operad.

$$\mathsf{Sp}(\mathsf{Alg}_{\circlearrowleft}) \simeq \mathsf{Fun}^{\mathsf{exact}}(\circlearrowleft_{\leq 1}, \mathsf{Sp}) \simeq \mathsf{Pro}(\circlearrowleft_{\leq 1})^{\mathit{op}}$$

where $0 \le 1$ is the underlying stable ∞ -category of 0.

 $\mathsf{Pro}(\mathbb{O}_{\leq 1})$ is the ∞ -category of pro-objects in the ∞ -category $\mathbb{O}_{\leq 1}$. A cofiltered diagram $c: \mathbb{I} \to \mathbb{O}_{\leq 1}$ corresponds to the exact functor

$$X\mapsto \mathop{\sf colim}_{i\in\mathbb{T}}\mathop{\sf Map}_{\mathbb{O}_{\leq 1}}(c(i),X)$$

Example

If O = Com, then $O_{<1} = Sp^{fin}$ and

$$\mathsf{Sp}(\mathsf{Alg}_\mathsf{Com}) \simeq \mathsf{Pro}(\mathsf{Sp}^\mathit{fin})^\mathit{op} \simeq \mathsf{Sp}$$

Operad Structure on Pro-Objects

Definition

We can define a stable ∞ -operad Pro(0) with underlying stable ∞ -category $Pro(0_{\leq 1})$.

For cofiltered diagrams $c_i : \mathbb{I}_i \to \mathcal{O}_{\leq 1}, \ d : \mathbb{J} \to \mathcal{O}_{\leq 1}$, we set

$$\mathsf{Pro}(\mathfrak{O})(c_1,\ldots,c_n;d) := \lim_{\substack{j \ (i_1,\ldots,i_n)}} \mathcal{O}(c_1(i_1),\ldots,c_n(i_n);d(j))$$

generalizing the usual definition of morphisms of pro-objects (in case n = 1). Note that \mathbb{O} embeds in $Pro(\mathbb{O})$ as a full sub-operad (sub-multicategory).

Theorem (C., 2020)

For a small stable ∞ -operad 0, we have

$$\mathfrak{I}_{\mathsf{Alg}_{\mathfrak{O}}} \simeq \mathsf{Pro}(\mathfrak{O}).$$

Outline of Proof

Proof.

Let $\hat{\mathbb{O}}$ be the monoidal envelope of \mathbb{O} :

- objects: finite sequence (c_1, \ldots, c_n) in \emptyset ;
- monoidal structure: concatenation.

Then there are fully faithful embeddings of stable ∞ -operads

$$\mathbb{J}_{\mathsf{Alg}_{\mathbb{O}}} \hookrightarrow \mathsf{Fun}(\hat{\mathbb{O}},\mathsf{Sp})^{\mathit{Day},\mathit{op}} \hookleftarrow \mathsf{Pro}(\mathbb{O})$$

with the same essential image: the functors $G: \hat{\mathbb{O}} \to \mathsf{Sp}$ such that

- $G(c_1,\ldots,c_n)\simeq *$ for $n\geq 1$;
- G restricts to an exact functor $\mathcal{O}_{\leq 1} \to \mathsf{Sp}$.

$$(\hookrightarrow)$$
: For $X \in Sp(Alg_{\mathcal{O}})$:

$$\partial_1(-)(X) \mapsto (c_1, \ldots, c_n) \mapsto \partial_1(\operatorname{ev}_{c_1} \wedge \ldots \wedge \operatorname{ev}_{c_n})(X)$$

$$(\leftarrow)$$
: left Kan extension along $\mathcal{O}_{<1} \to \hat{\mathcal{O}}$

Some Further Questions

- Is there a chain rule: $\mathcal{M}_{\textit{GF}} \simeq \mathcal{M}_{\textit{G}} \circ_{\mathbb{J}_{e}} \mathcal{M}_{\textit{F}}$? [Conjecture: Yes.]
- What is the relationship between Lurie's model for $\partial_*(\Sigma^\infty\Omega^\infty)$ and $\mathcal{I}_{\mathfrak{C}}$? [Bar-cobar duality for stable ∞ -operads?]
- What is the relationship between the functors $Cat_{\infty} \leftrightarrows \mathcal{O}p_{\infty}$:

$${\mathfrak C}\mapsto {\mathfrak I}_{\mathfrak C},\quad {\mathfrak O}\mapsto \mathsf{Alg}_{\mathfrak O}$$

[Conjecture: a 'quasi-adjunction' between $(\infty, 2)$ -categories.]

• How can we recover ${\mathfrak C}$ (or maybe its Taylor tower à la Heuts) from ${\mathfrak I}_{\mathfrak C}$ with additional information?

[Conjecture: resolve $\mathfrak{I}_{\mathfrak{C}}$ by a 'pro-operad': the coendomorphism 'pro-operad' on the ind-objects in $\mathfrak{F}_{\mathfrak{C}} \to \mathsf{Sp}$ of the form

$$F \mapsto [FX \to \Omega F \Sigma X \to \Omega^2 F \Sigma^2 X \to \cdots \to \partial_1(F)(X)].]$$

References

- L. F. A. Arbogast, Du Calcul des Dérivations, Strasbourg (1800)
- Gregory Arone, C., Operads and chain rules in the calculus of functors, Astérisque 338 (2011)
- Gregory Arone, Marja Kankaanrinta, A functorial model for iterated Snaith splitting with applications to calculus of functors, Fields Inst. Commun. 19, 1–30 (1998)
- Gregory Arone, Mark Mahowald, The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres, Invent. Math. 135(3), 743–788 (1999)
- Maria Basterra, Michael Mandell, *Homology and cohomology of* E_{∞} *ring spectra*, Math. Z. 249(4), 903–944 (2005)
- Kristine Bauer, Brenda Johnson, Christina Osborne, Emily Riehl, Amelia Tebbe, Directional derivatives and higher order chain rules for abelian functor calculus, Topology Appl. 235, 375–427 (2018)
- Francesco Faà di Bruno, Note sur une nouvelle formule de calcul difféerentiel, Quaterly J. Pure Appl. Math. 1, 359–360 (1857)

- C., A chain rule for Goodwillie derivatives of functors from spectra to spectra, Trans. Amer. Math. Soc. 362(1), 399–426 (2010)
 C., Bar-cobar duality for operads in stable homotopy theory, J.
- Topol. 5(1), 39–80 (2012)

 C., Infinity-operads and Day convolution in Goodwillie calculus,
- arxiv:1801.03467v2 (2020)

 Duncan Clark, On the Goodwillie derivatives of the identity in
- structured ring spectra, arXiv:2004.02812 (2020)

 Saul Glasman, Day convolution for ∞-categories, Math. Res. Lett. 23(5). 1369–1385 (2016)
- Satir Glasman, Day Convolution for ∞-categories, Wath. Res. Lett. 23(5), 1369–1385 (2016)
 Thomas Goodwillie, Calculus III, Geom. Topol. 7, 645–711 (2003)
 Circ Houts, Coodwillie, approximations to higher categories to
- Gijs Heuts, Goodwillie approximations to higher categories, to appear in Mem. Amer. Math. Soc, arXiv:1510.03304 (2015)
 Nicholas Kuhn, Localization of André-Quillen-Goodwillie towers, and the periodic homology of infinite loopspaces, Adv. Math. 201,
- 318–368 (2006)
 Jacob Lurie, *Higher Algebra* (2017)
 Randy McCarthy, *Dual calculus for functors to spectra*, Contemp.
 - Math. 271, 183–215 (2001)