Moduli problems for operadic algebras

joint with D. Calaque, R. Campos

Joost Nuiten Université de Montpellier

> Operad Pop-Up August 11, 2020

Goal

Throughout: fix k field of characteristic zero.

Classical principle in deformation theory

Every deformation problem over k is controlled by a dg-Lie algebra \mathfrak{g} .

Question

Suppose that \mathfrak{g} admits *additional* algebraic structure.

How can this additional structure be understood in terms of deformation problems?

X - proper smooth variety over $\mathbb{C}.$

Study infinitesimal deformations of X along an Artin local \mathbb{C} -algebra A:

X - proper smooth variety over \mathbb{C} .

Study infinitesimal deformations of X along an Artin local \mathbb{C} -algebra A:

Kodaira-Spencer: infinitesimal deformations controlled by tangent bundle T_X .

• $H^0(X, T_X) \leftrightarrow$ first order automorphisms of X.

X - proper smooth variety over $\mathbb{C}.$

Study infinitesimal deformations of X along an Artin local \mathbb{C} -algebra A:

Kodaira–Spencer: infinitesimal deformations controlled by tangent bundle T_X .

- $H^0(X, T_X) \leftrightarrow$ first order automorphisms of X.
- $H^1(X, T_X) \leftrightarrow$ deformations of X over $\mathbb{C}[\epsilon]/\epsilon^2$.

X - proper smooth variety over $\mathbb{C}.$

Study infinitesimal deformations of X along an Artin local \mathbb{C} -algebra A:

Kodaira-Spencer: infinitesimal deformations controlled by tangent bundle T_X .

- $H^0(X, T_X) \leftrightarrow$ first order automorphisms of X.
- $H^1(X, T_X) \leftrightarrow$ deformations of X over $\mathbb{C}[\epsilon]/\epsilon^2$.
- $H^2(X, T_X)$ controls *obstructions* to extending deformations:

$$\begin{split} \tilde{X}_n & \longrightarrow \tilde{X}_{n+1} \\ \downarrow & \downarrow \\ \text{Spec}(k[\epsilon]/\epsilon^n) & \longrightarrow \text{Spec}(k[\epsilon]/\epsilon^{n+1}) \end{split} \iff \text{ob}(X_n) = 0 \in H^2(X, T_X). \end{split}$$

 $H^*(X, T_X)$ computed by the *Dolbeault complex*

$$\Omega^{0,*}(T_X) = \left[\Omega^{0,0}(X_{\mathbb{C}}, T_X^{1,0}) \xrightarrow{\overline{\partial}} \Omega^{0,1}(X_{\mathbb{C}}, T_X^{1,0}) \xrightarrow{\overline{\partial}} \Omega^{0,2}(X_{\mathbb{C}}, T_X) \to \dots\right].$$

This is a dg-Lie algebra, from commutator of vector fields and multiplication of forms.

 $H^*(X, T_X)$ computed by the *Dolbeault complex*

$$\Omega^{0,*}(\mathcal{T}_X) = \left[\Omega^{0,0}(X_{\mathbb{C}},\mathcal{T}_X^{1,0}) \xrightarrow{\overline{\partial}} \Omega^{0,1}(X_{\mathbb{C}},\mathcal{T}_X^{1,0}) \xrightarrow{\overline{\partial}} \Omega^{0,2}(X_{\mathbb{C}},\mathcal{T}_X) \to \dots\right].$$

This is a dg-Lie algebra, from commutator of vector fields and multiplication of forms. **Idea.** $\Omega^{0,*}(T_X)$ controls deformations of X via the *Maurer–Cartan equation*.

More precisely, for Artin algebra A with maximal ideal \mathfrak{m}_A

$$\left\{ \text{deformations } \tilde{X} \text{ over } \text{Spec}(A) \right\} \simeq \left\{ \begin{array}{c} x \in \mathfrak{m}_A \otimes \Omega^{0,1}(T_X) \\ dx + \frac{1}{2}[x,x] = 0 \end{array} \right\}$$

$$\underset{\text{automorphisms}}{\underbrace{} \exp(\mathfrak{m}_A \otimes \Omega^{0,0}(T_X))}$$

 $H^*(X, T_X)$ computed by the *Dolbeault complex*

$$\Omega^{0,*}(\mathcal{T}_X) = \left[\Omega^{0,0}(X_{\mathbb{C}},\mathcal{T}_X^{1,0}) \xrightarrow{\overline{\partial}} \Omega^{0,1}(X_{\mathbb{C}},\mathcal{T}_X^{1,0}) \xrightarrow{\overline{\partial}} \Omega^{0,2}(X_{\mathbb{C}},\mathcal{T}_X) \to \dots\right].$$

This is a dg-Lie algebra, from commutator of vector fields and multiplication of forms.

Idea. $\Omega^{0,*}(T_X)$ controls deformations of X via the Maurer–Cartan equation.

Higher cohomology groups: control *derived* deformations of X over *dg*-Artin algebra A.

Definition

An augmented commutative dg-algebra A over k is called Artin if:

- $H^*(A)$ finite-dimensional and in nonpositive degrees.
- $H^0(A) \rightarrow k$ has nilpotent kernel.

 $H^*(X, T_X)$ computed by the *Dolbeault complex*

$$\Omega^{0,*}(\mathcal{T}_X) = \left[\Omega^{0,0}(X_{\mathbb{C}},\mathcal{T}_X^{1,0}) \xrightarrow{\overline{\partial}} \Omega^{0,1}(X_{\mathbb{C}},\mathcal{T}_X^{1,0}) \xrightarrow{\overline{\partial}} \Omega^{0,2}(X_{\mathbb{C}},\mathcal{T}_X) \to \dots\right].$$

This is a dg-Lie algebra, from commutator of vector fields and multiplication of forms.

Idea. $\Omega^{0,*}(T_X)$ controls deformations of X via the Maurer–Cartan equation.

Higher cohomology groups: control *derived* deformations of X over *dg*-Artin algebra A.

Definition

An augmented commutative dg-algebra A over k is called Artin if:

- $H^*(A)$ finite-dimensional and in nonpositive degrees.
- $H^0(A) \rightarrow k$ has nilpotent kernel.

Negative cohomology groups of a dg-Lie algebra: control homotopies between automorphisms.

Formal moduli problems

Definition

A formal moduli problem is a functor of ∞ -categories

 $F:\operatorname{Art}\to\operatorname{Spaces}$

from Artin commutative dg-algebras to spaces, such that:

• $F(k) \simeq *$.

• Schlessinger condition: for $A_1 \twoheadrightarrow A_0 \twoheadleftarrow A_2$ surjective on H^0 :

$$F(A_1 \times^h_{A_0} A_2) \xrightarrow{\sim} F(A_1) \times^h_{F(A_0)} F(A_2)$$

` 'gluing along $\operatorname{Spec}(A_1)\cup_{\operatorname{Spec}(A_0)}\operatorname{Spec}(A_2)$ '

Formal moduli problems

Definition

A formal moduli problem is a functor of ∞ -categories

 $F:\operatorname{Art}\to\operatorname{Spaces}$

from Artin commutative dg-algebras to spaces, such that:

- $F(k) \simeq *$.
- Schlessinger condition: for $A_1 \twoheadrightarrow A_0 \twoheadleftarrow A_2$ surjective on H^0 :

$$F(A_1 \times^h_{A_0} A_2) \xrightarrow{\sim} F(A_1) \times^h_{F(A_0)} F(A_2)$$

Theorem (Pridham, Lurie)

There is an equivalence of ∞-categories between formal moduli problems and dg-Lie algebras

$$\operatorname{FMP} \xrightarrow{\simeq} \operatorname{Alg}_{\operatorname{Lie}}.$$

Example: deforming modules

- B associative algebra.
- V (left) B-module (concentrated in cohomological degrees ≤ 0).

Deformations of V form a formal moduli problem $\mathrm{Def}_V: \mathrm{Art} \to \mathrm{Spaces}$

$$\mathrm{Def}_{V}(A) = \mathrm{Mod}_{A \otimes B} \times^{h}_{\mathrm{Mod}_{B}} \{V\} = \left\{\begin{array}{c} A \otimes B \text{-modules } V_{A} \\ \text{with } k \otimes_{A} V_{A} \xrightarrow{\sim} V \end{array}\right\}.$$

This is classified by $\operatorname{RHom}_{\mathcal{B}}(V, V)$, endowed with the commutator bracket.

Example: deforming modules

B - associative algebra.

V - (left) B-module (concentrated in cohomological degrees ≤ 0).

Deformations of V form a formal moduli problem $\mathrm{Def}_V: \mathrm{Art} \to \mathrm{Spaces}$

$$\mathrm{Def}_{V}(A) = \mathrm{Mod}_{A \otimes B} \times^{h}_{\mathrm{Mod}_{B}} \{V\} = \left\{\begin{array}{c} A \otimes B \text{-modules } V_{A} \\ \text{with } k \otimes_{A} V_{A} \xrightarrow{\sim} V \end{array}\right\}.$$

This is classified by $\operatorname{RHom}_{\mathcal{B}}(V, V)$, endowed with the commutator bracket.

Explicit model: bar construction

$$\Big[\operatorname{Hom}_k\big(V,V\big)\to\operatorname{Hom}\big(B\otimes V,V\big)\to\operatorname{Hom}\big(B\otimes B\otimes V,V\big)\to\dots\Big]$$

with commutator bracket

Example: deforming associative algebras

```
B - associative algebra over k.
```

Deformations of B form a formal moduli problem

$$\operatorname{Def}_{B}(A) = \operatorname{Alg}_{A} \times^{h}_{\operatorname{Alg}_{k}} \{B\} = \left\{ \begin{array}{c} A \text{-linear associative algebras } B_{A} \\ \text{with } k \otimes_{A} B_{A} \xrightarrow{\sim} B \end{array} \right\}$$

This is classified by the (reduced) Hochschild cochains

$$\overline{\operatorname{HH}}(B,B) = \left[\operatorname{Hom}(B,B) \to \operatorname{Hom}(B^{\otimes 2},B) \to \dots\right],$$

Example: deforming associative algebras

$$B$$
 - associative algebra over k .

Deformations of B form a formal moduli problem

$$\mathrm{Def}_B(A) = \mathrm{Alg}_A \times^h_{\mathrm{Alg}_k} \{B\} = \left\{ \begin{array}{c} A \text{-linear associative algebras } B_A \\ \text{with } k \otimes_A B_A \xrightarrow{\sim} B \end{array} \right\}.$$

This is classified by the (reduced) Hochschild cochains

$$\overline{\operatorname{HH}}(B,B) = \Big[\operatorname{Hom}(B,B) \to \operatorname{Hom}(B^{\otimes 2},B) \to \dots \Big],$$

with Lie structure given by the Gerstenhaber bracket:

Differential:

Adding algebraic structure

Question

Let $\text{Lie} \rightarrow \mathcal{P}$ be a map of *k*-linear (dg-) operads.

If ${\mathfrak g}$ arises from a ${\mathfrak P}\mbox{-algebra},$ what structure does the corresponding formal moduli problem have?

Example 0: linear deformation problems

- $\epsilon : \text{Lie} \rightarrow k$ the augmentation.
- $\epsilon^* : \operatorname{Mod}_k \to \operatorname{Alg}_{\operatorname{Lie}}$ takes the *trivial* Lie algebra.

Example 0: linear deformation problems

- $\epsilon: \mathrm{Lie} \to k$ the augmentation.
- $\epsilon^* : \operatorname{Mod}_k \to \operatorname{Alg}_{\operatorname{Lie}}$ takes the *trivial* Lie algebra.

Proposition

Example 0: linear deformation problems

$\epsilon: \mathrm{Lie} \to k$ the augmentation.

 $\epsilon^*: \operatorname{Mod}_k \to \operatorname{Alg}_{\operatorname{Lie}}$ takes the *trivial* Lie algebra.

Proposition

More precisely, there is a commuting square

Example 1: deforming modules

V a B-module.

- (1) The Lie algebra $\operatorname{RHom}_B(V, V)$ arises from an associative algebra.
- (2) The corresponding formal moduli problem

$$Def_{V}(A) = \left\{ \begin{array}{c} A \otimes B \text{-modules } V_{A} \\ \text{with } k \otimes_{A} V_{A} \xrightarrow{\sim} V \end{array} \right\}$$

arises from a functor defined on Artin associative algebras A.

Example 1: deforming modules

V a B-module.

- (1) The Lie algebra $\operatorname{RHom}_B(V, V)$ arises from an associative algebra.
- (2) The corresponding formal moduli problem

$$Def_{V}(A) = \left\{ \begin{array}{c} A \otimes B \text{-modules } V_{A} \\ \text{with } k \otimes_{A} V_{A} \xrightarrow{\sim} V \end{array} \right\}$$

arises from a functor defined on Artin associative algebras A.

In fact: the associative extensions (1) and (2) correspond to each other via

Example 2: deforming the trivial algebra

Suppose $(B, \mu = 0)$ is a *trivial* associative algebra.

Then

$$\overline{\operatorname{HH}}(B,B) = \left[\operatorname{Hom}(B,B) \overset{0}{\longrightarrow} \operatorname{Hom}(B^{\otimes 2},B) \overset{0}{\longrightarrow} \dots\right]$$

together with the operation

form a pre-Lie algebra:

$$\alpha \circ (\beta \circ \gamma) - (\alpha \circ \beta) \circ \gamma = \alpha \circ (\gamma \circ \beta) - (\alpha \circ \gamma) \circ \beta.$$

Question: interpretation in terms of formal moduli problems?

Fix: $\mathcal{P} \rightarrow k$ an augmented k-linear (symmetric, dg-) operad such that

 $H^*(\mathcal{P})(r) = 0$ for all * > 0 and $r \in \mathbb{N}$.

Fix: $\mathcal{P} \rightarrow k$ an augmented k-linear (symmetric, dg-) operad such that

 $H^*(\mathcal{P})(r) = 0$ for all * > 0 and $r \in \mathbb{N}$.

Definition

A P-algebra A is Artin if:

• $H^*(A)$ is finite-dimensional and vanishes in degrees > 0.

2 Each $H^i(A)$ is a *nilpotent* module over the $H^0(\mathcal{P})$ -algebra $H^0(A)$:

there is some n such that any n-fold composition of maps

$$\mu(a_1,\ldots,a_n,-):H^i(A)\to H^i(A) \qquad \mu\in H^0(\overline{\mathcal{P}}), \quad a_i\in H^0(A)$$

vanishes.

Remark. For \mathcal{P} = Com the (nonunital) commutative operad:

(nonunital) Artin algebras \Leftrightarrow augmentation ideals of *augmented* unital Artin algebras.

Fix: $\mathcal{P} \rightarrow k$ an augmented k-linear (symmetric, dg-) operad such that

 $H^*(\mathcal{P})(r) = 0$ for all * > 0 and $r \in \mathbb{N}$.

Definition

A formal moduli problem is a functor of ∞ -categories

 $F:\operatorname{Art}_{\mathcal{P}}\to\operatorname{Spaces}$

from Artin $\operatorname{\mathcal{P}-algebras}$ to spaces, such that:

• $F(0) \simeq *$.

• Schlessinger condition: for $A_1 \twoheadrightarrow A_0 \twoheadleftarrow A_2$ surjective on H^0 :

$$F(A_1 \times^h_{A_0} A_2) \xrightarrow{\sim} F(A_1) \times^h_{F(A_0)} F(A_2)$$

Theorem (Calaque–Campos–N.)

Let \mathcal{P} be a Koszul binary quadratic operad in nonpositive cohomological degrees, with Koszul dual $\mathcal{P}^!$. Then there is an equivalence of ∞ -categories

 $MC: Alg_{\mathcal{P}^!} \xrightarrow{\sim} FMP_{\mathcal{P}}$

between $\mathcal{P}^!$ -algebras and \mathcal{P} -algebraic formal moduli problems.

Immediate examples: \mathcal{P} $\mathcal{P}^!$ ComLieAsAsPoisnPoisn $\{1-n\}$ $(n \ge 1)$ ZinbLeib

First remarks

(1) Naturality in \mathcal{P} . For every map $\mathcal{P} \to \mathcal{Q}$ of Koszul binary quadratic operads with dual $\mathcal{Q}^! \to \mathcal{P}^!$:

$$\begin{array}{ccc} \operatorname{Alg}_{\mathcal{P}^{1}} & \xrightarrow{\sim} & \operatorname{FMP}_{\mathcal{P}} \\ & & & & & \\ \operatorname{forget} & & & & & \\ & & & & & \\ \operatorname{Alg}_{\mathcal{Q}^{1}} & \xrightarrow{\sim} & \operatorname{FMP}_{\mathcal{Q}}. \end{array}$$

First remarks

(1) Naturality in \mathcal{P} . For every map $\mathcal{P} \to \mathcal{Q}$ of Koszul binary quadratic operads with dual $\mathcal{Q}^! \to \mathcal{P}^!$:

$$\begin{array}{c} \operatorname{Alg}_{\mathcal{P}^{1}} & \xrightarrow{\sim} & \operatorname{FMP}_{\mathcal{P}} \\ & & & & \\ \operatorname{forget} & & & & \\ & & & & \\ & \operatorname{Alg}_{\mathcal{Q}^{1}} & \xrightarrow{\sim} & \operatorname{FMP}_{\mathcal{Q}}. \end{array}$$

(2) The Maurer–Cartan equation.

Fix $\mathfrak{g} \neq \mathfrak{P}^!$ -algebra and $A \in \operatorname{Art}_{\mathfrak{P}}$. Then $\operatorname{MC}_{\mathfrak{g}}(A)$ can be computed as follows:

First remarks

(1) Naturality in \mathcal{P} . For every map $\mathcal{P} \to \mathcal{Q}$ of Koszul binary quadratic operads with dual $\mathcal{Q}^! \to \mathcal{P}^!$:

$$\begin{array}{ccc} \operatorname{Alg}_{\mathcal{P}^{1}} & \xrightarrow{\sim} & \operatorname{FMP}_{\mathcal{P}} \\ & & & & & \\ \operatorname{forget} & & & & & \\ & & & & & \\ & & & & & \\ \operatorname{Alg}_{\mathcal{Q}^{1}} & \xrightarrow{\sim} & \operatorname{FMP}_{\mathcal{Q}}. \end{array}$$

(2) The Maurer–Cartan equation.

Fix $\mathfrak{g} \neq \mathfrak{P}^!$ -algebra and $A \in \operatorname{Art}_{\mathfrak{P}}$. Then $\operatorname{MC}_{\mathfrak{g}}(A)$ can be computed as follows:

- Pick an equivalent \mathcal{P}_{∞} -algebra $A_{\infty} \simeq A$ with A_{∞} a finite-dimensional complex.
- There is a map of operads $\text{Lie}_{\infty} \to \mathcal{P}_{\infty} \otimes_{H} \mathcal{P}^{!}$.
- Consequently, $A_{\infty} \otimes \mathfrak{g}$ inherits a Lie $_{\infty}$ -structure.
- The space $MC_{\mathfrak{g}}(A)$ can be modeled by the simplicial set of Maurer–Cartan elements

$$\mathrm{MC}_{\mathfrak{g}}(A) \simeq \mathrm{MC}(A_{\infty} \otimes \mathfrak{g} \otimes \Omega[\Delta^{\bullet}]).$$

Example: deforming the trivial algebra

Recall: for $(B, \mu = 0)$ trivial associative algebra, $\overline{HH}(B, B)$ has pre-Lie structure

Example: deforming the trivial algebra

Recall: for $(B, \mu = 0)$ trivial associative algebra, $\overline{HH}(B, B)$ has pre-Lie structure.

Theorem (Chapoton-Livernet)

The pre-Lie operad is Koszul, with Koszul dual given by the permutative operad.

A permutative algebra is a (nonunital) associative algebra such that

a(bc) = a(cb).

Example: deforming the trivial algebra

Recall: for $(B, \mu = 0)$ trivial associative algebra, $\overline{HH}(B, B)$ has pre-Lie structure.

Theorem (Chapoton-Livernet)

The pre-Lie operad is Koszul, with Koszul dual given by the permutative operad.

A permutative algebra is a (nonunital) associative algebra such that

a(bc) = a(cb).

Proposition (informal)

The pre-Lie algebra $\overline{\text{HH}}(B, B)$ classifies a permutative formal moduli problem Def_B . For a permutative algebra A, the space $\text{Def}_B(A)$ consists of the following deformations of B:

- a (flat) right A-module \tilde{B} , together with $\tilde{B}/\tilde{B} \cdot A \xrightarrow{\sim} B$.
- \bullet an associative (A_∞) product

$$\tilde{B} \otimes_k \tilde{B} \longrightarrow \tilde{B} \cdot A \subseteq \tilde{B}$$
 right A-bilinear.

About the proof

Theorem

For \mathcal{P} Koszul, there is an equivalence of ∞ -categories $\mathrm{MC}: \mathrm{Alg}_{\mathcal{P}^!} \xrightarrow{\sim} \mathrm{FMP}_{\mathcal{P}}$.

About the proof

Theorem

For \mathcal{P} Koszul, there is an equivalence of ∞ -categories $\mathrm{MC}: \mathrm{Alg}_{\mathcal{P}^!} \xrightarrow{\sim} \mathrm{FMP}_{\mathcal{P}}$.

(1) For $(\mathcal{P}, \mathcal{P}^!)$ Koszul dual, there is an adjunction between ∞ -categories

$$\mathfrak{D}: \operatorname{Alg}_{\mathcal{P}} \xrightarrow{\longrightarrow} \operatorname{Alg}_{\mathcal{P}^!}^{\operatorname{op}}: \mathfrak{D}'.$$

Here $\mathfrak{D}(A)$ is the linear dual of the bar construction $B(A) = (\mathcal{P}^{i}(A[1]), d_{Bar}).$ (2) Define $MC : Alg_{\mathcal{P}^{i}} \longrightarrow FMP_{\mathcal{P}}$ by

$$\mathrm{MC}_{\mathfrak{g}}(A) = \mathrm{Map}_{\mathrm{Alg}_{\mathcal{P}^{!}}}(\mathfrak{D}(A), \mathfrak{g}) \qquad A \in \mathrm{Art}_{\mathcal{P}}, \quad \mathfrak{g} \in \mathrm{Alg}_{\mathcal{P}^{!}}.$$

To check: \mathfrak{D} sends pullbacks of Artin \mathcal{P} -algebras to pushouts of $\mathcal{P}^!$ -algebras.

About the proof

Theorem

For \mathcal{P} Koszul, there is an equivalence of ∞ -categories $\mathrm{MC}: \mathrm{Alg}_{\mathcal{P}^!} \xrightarrow{\sim} \mathrm{FMP}_{\mathcal{P}}$.

(1) For $(\mathcal{P}, \mathcal{P}^!)$ Koszul dual, there is an adjunction between ∞ -categories

$$\mathfrak{D}: \operatorname{Alg}_{\mathcal{P}} \xrightarrow{\longrightarrow} \operatorname{Alg}_{\mathcal{P}^!}^{\operatorname{op}}: \mathfrak{D}'.$$

Here $\mathfrak{D}(A)$ is the linear dual of the bar construction $B(A) = (\mathcal{P}^{i}(A[1]), d_{Bar}).$ (2) Define $MC : Alg_{\mathcal{P}^{i}} \longrightarrow FMP_{\mathcal{P}}$ by

$$\mathrm{MC}_{\mathfrak{g}}(A) = \mathrm{Map}_{\mathrm{Alg}_{\mathcal{P}^{!}}}(\mathfrak{D}(A), \mathfrak{g}) \qquad A \in \mathrm{Art}_{\mathcal{P}}, \quad \mathfrak{g} \in \mathrm{Alg}_{\mathcal{P}^{!}}.$$

To check: \mathfrak{D} sends pullbacks of Artin \mathcal{P} -algebras to pushouts of \mathcal{P} !-algebras. (3) MC is an equivalence as soon as \mathfrak{D} is fully faithful on Artin \mathcal{P} -algebras.

Further generalizations

(1) For arbitrary augmented operads $\mathcal{P} \to k$: use the *bar dual* operad $\mathfrak{D}(\mathcal{P}) = (B\mathcal{P})^{\vee}$. Then there is an equivalence

$$\operatorname{Alg}_{\mathfrak{D}(\mathcal{P})} \xrightarrow{\sim} \operatorname{FMP}_{\mathcal{P}}$$

if the following holds:

- $\mathcal{P}(0) = 0$ and $\mathcal{P}(1) = k \cdot 1$.
- for each *n*: $H^n(B\mathcal{P}(r))$ vanishes for $r \gg 0$.

Example: $\mathcal{P} = \mathbb{E}_n$.

Further generalizations

(1) For arbitrary augmented operads $\mathcal{P} \to k$: use the *bar dual* operad $\mathfrak{D}(\mathcal{P}) = (B\mathcal{P})^{\vee}$. Then there is an equivalence

$$\operatorname{Alg}_{\mathfrak{D}(\mathcal{P})} \xrightarrow{\sim} \operatorname{FMP}_{\mathcal{P}}$$

if the following holds:

- $\mathcal{P}(0) = 0$ and $\mathcal{P}(1) = k \cdot 1$.
- for each *n*: $H^n(B\mathcal{P}(r))$ vanishes for $r \gg 0$.

Example: $\mathcal{P} = \mathbb{E}_n$.

(2) There is a more cumbersome condition when $\mathcal{P}(0) \neq 0$ or $\mathcal{P}(1) \neq k$.

Further generalizations

(1) For arbitrary augmented operads $\mathcal{P} \to k$: use the *bar dual* operad $\mathfrak{D}(\mathcal{P}) = (B\mathcal{P})^{\vee}$. Then there is an equivalence

$$\operatorname{Alg}_{\mathfrak{D}(\mathcal{P})} \xrightarrow{\sim} \operatorname{FMP}_{\mathcal{P}}$$

if the following holds:

- $\mathcal{P}(0) = 0$ and $\mathcal{P}(1) = k \cdot 1$.
- for each *n*: $\operatorname{H}^{n}(\operatorname{BP}(r))$ vanishes for $r \gg 0$.

Example: $\mathcal{P} = \mathbb{E}_n$.

- (2) There is a more cumbersome condition when $\mathcal{P}(0) \neq 0$ or $\mathcal{P}(1) \neq k$.
- (3) Relative/coloured case: replace k by dg-algebra or dg-category \mathbb{K} over k.

augmented $\mathbb{K} \to \mathcal{P} \to \mathbb{K} \quad \rightsquigarrow \quad (\text{relative}) \text{ dual } \mathbb{K}^{\mathrm{op}} \to \mathfrak{D}(\mathcal{P}) \to \mathbb{K}^{\mathrm{op}}.$

Example: the theorem applies to $\mathcal{P} = SC_n$.

Recall: 1-coloured *augmented* (symmetric) operads \leftrightarrow 1-coloured *nonunital* operads.

 \Rightarrow augmented 1-coloured operads are algebras over a coloured operad $\mathbb{O}_{\Sigma}.$

Recall: 1-coloured *augmented* (symmetric) operads \leftrightarrow 1-coloured *nonunital* operads.

 \Rightarrow augmented 1-coloured operads are algebras over a coloured operad $\mathbb{O}_{\Sigma}.$

 \mathbb{O}_{Σ} admits an augmentation

$$k[\Sigma] \to \mathcal{O}_{\Sigma} \to k[\Sigma]$$

where $k[\Sigma]$ is the k-linearized category of finite sets and bijections.

Recall: 1-coloured *augmented* (symmetric) operads ↔ 1-coloured *nonunital* operads.

 \Rightarrow augmented 1-coloured operads are algebras over a coloured operad $\mathbb{O}_{\Sigma}.$

 \mathbb{O}_{Σ} admits an augmentation

$$k[\Sigma] \to \mathcal{O}_{\Sigma} \to k[\Sigma]$$

where $k[\Sigma]$ is the k-linearized category of finite sets and bijections.

Proposition (Van der Laan, Dehling–Vallette) \mathcal{O}_{Σ} is Koszul self-dual relative to $k[\Sigma]$.

Recall: 1-coloured *augmented* (symmetric) operads \leftrightarrow 1-coloured *nonunital* operads.

 \Rightarrow augmented 1-coloured operads are algebras over a coloured operad $\mathbb{O}_{\Sigma}.$

 \mathbb{O}_{Σ} admits an augmentation

$$k[\Sigma] \to \mathfrak{O}_{\Sigma} \to k[\Sigma]$$

where $k[\Sigma]$ is the k-linearized category of finite sets and bijections.

Proposition (Van der Laan, Dehling–Vallette) \mathcal{O}_{Σ} is Koszul self-dual relative to $k[\Sigma]$.

Theorem

Augmented operads are equivalent to operadic formal moduli problems, i.e. functors

$$F: \{ \text{Artin augmented dg} - \text{operads} \} \longrightarrow \text{Spaces}$$

(1) The operadic formal moduli problem classified by \mathcal{P} is given by

$$\mathrm{MC}_{\mathcal{P}}: \mathrm{Art}_{\mathrm{Op}} \longrightarrow \mathrm{Spaces}; \ \mathcal{N} \longmapsto \mathrm{Map}_{\mathrm{Op}^{\mathrm{aug}}}(\mathfrak{D}(\mathcal{N}), \mathcal{P}).$$

When $\mathcal{P}(0) = 0$ and $\mathcal{P}(1) = k$, this is equivalent to

$$\mathrm{MC}_{\mathcal{P}}(\mathcal{N}) \simeq \mathrm{Map}_{\mathrm{Op}^{\mathrm{aug}}}(\mathrm{Lie}_{\infty}, \mathcal{P} \otimes_{\mathrm{H}} \mathcal{N}).$$

(1) The operadic formal moduli problem classified by \mathcal{P} is given by

$$\mathrm{MC}_{\mathcal{P}} : \mathrm{Art}_{\mathrm{Op}} \longrightarrow \mathrm{Spaces}; \ \mathcal{N} \longmapsto \mathrm{Map}_{\mathrm{Op}^{\mathrm{aug}}} (\mathfrak{D}(\mathcal{N}), \mathcal{P}).$$

When $\mathcal{P}(0) = 0$ and $\mathcal{P}(1) = k$, this is equivalent to

$$\mathrm{MC}_{\mathcal{P}}(\mathcal{N}) \simeq \mathrm{Map}_{\mathrm{Op}^{\mathrm{aug}}}(\mathrm{Lie}_{\infty}, \mathcal{P} \otimes_{\mathrm{H}} \mathcal{N}).$$

(2) Naturality. There are two functors

(1) The operadic formal moduli problem classified by \mathcal{P} is given by

$$\mathrm{MC}_{\mathcal{P}} : \mathrm{Art}_{\mathrm{Op}} \longrightarrow \mathrm{Spaces}; \ \mathcal{N} \longmapsto \mathrm{Map}_{\mathrm{Op}^{\mathrm{aug}}} (\mathfrak{D}(\mathcal{N}), \mathcal{P}).$$

When $\mathcal{P}(0) = 0$ and $\mathcal{P}(1) = k$, this is equivalent to

$$\mathrm{MC}_{\mathcal{P}}(\mathcal{N}) \simeq \mathrm{Map}_{\mathrm{Op}^{\mathrm{aug}}}(\mathrm{Lie}_{\infty}, \mathcal{P} \otimes_{\mathrm{H}} \mathcal{N}).$$

(2) Naturality. There are two functors

(1) The operadic formal moduli problem classified by $\mathcal P$ is given by

$$\mathrm{MC}_{\mathcal{P}} : \mathrm{Art}_{\mathrm{Op}} \longrightarrow \mathrm{Spaces}; \ \mathcal{N} \longmapsto \mathrm{Map}_{\mathrm{Op}^{\mathrm{aug}}} (\mathfrak{D}(\mathcal{N}), \mathcal{P}).$$

When $\mathcal{P}(0) = 0$ and $\mathcal{P}(1) = k$, this is equivalent to

$$\mathrm{MC}_{\mathcal{P}}(\mathcal{N}) \simeq \mathrm{Map}_{\mathrm{Op}^{\mathrm{aug}}}(\mathrm{Lie}_{\infty}, \mathcal{P} \otimes_{\mathrm{H}} \mathcal{N}).$$

(2) **Naturality.** There are two functors

$$\begin{array}{ccc} \operatorname{Op}^{\operatorname{aug}} \xrightarrow{\simeq} \operatorname{Op}^{\operatorname{nu}} \longrightarrow \operatorname{Alg}_{\operatorname{preLie}} & \operatorname{Alg}_{\operatorname{Perm}} \longrightarrow \operatorname{Op}^{\operatorname{nu}} \xrightarrow{\simeq} \operatorname{Op}^{\operatorname{aug}} \\ & & & \\ \mathcal{P} \longmapsto \longrightarrow \overline{\mathcal{P}} \longmapsto \longrightarrow \prod_{r} \overline{\mathcal{P}}(r)^{\Sigma_{r}} & A \longmapsto \overline{\mathcal{P}}_{A}(r) = A \longmapsto \mathcal{P}_{A} = k \oplus \overline{\mathcal{P}}_{A} \end{array}$$

Restricting operadic FMPs to permutative FMPs fits into

Once more: deforming the trivial algebra

Recall: for $(B, \mu = 0)$, $\overline{HH}(B, B)$ carries a pre-Lie structure.

Observation. This pre-Lie algebra arises from the (nonunital) convolution operad

$$\operatorname{Conv} \Big(\operatorname{coAs}\{1\}, \operatorname{End}(B) \Big)(r) = \operatorname{Hom}_k \Big(\operatorname{coAs}(r)[r-1], \operatorname{Hom}(B^{\otimes r}, B) \Big).$$

Once more: deforming the trivial algebra

Recall: for $(B, \mu = 0)$, $\overline{HH}(B, B)$ carries a pre-Lie structure.

Observation. This pre-Lie algebra arises from the (nonunital) convolution operad

$$\operatorname{Conv}\!\left(\operatorname{coAs}\!\{1\},\operatorname{End}(B)\right)\!(r) = \operatorname{Hom}_k\!\left(\operatorname{coAs}(r)[r-1],\operatorname{Hom}(B^{\otimes r},B)\right)\!.$$

To describe the associated formal moduli problem, we need the following:

Definition

Given a 1-coloured operad \mathfrak{P} , let $\mathrm{RMod}_{\mathfrak{P}}^{\otimes}$ be the (big) coloured operad with:

- colours given by (cofibrant) right $\mathcal{P}(1)$ -modules V.
- morphisms $(V_1, \ldots, V_r) \rightarrow V_0$ given by

$$V_1 \otimes \cdots \otimes V_r \to V_0 \otimes_{\mathcal{P}(1)} \mathcal{P}(r)$$
 right $\mathcal{P}(1)^{\otimes r}$ -linear.

Note: for the unit operad k, all operations in $RMod_k^{\otimes}$ of arity > 1 are zero!

Once more: deforming the trivial algebra

Recall: for $(B, \mu = 0)$, $\overline{HH}(B, B)$ carries a pre-Lie structure.

Observation. This pre-Lie algebra arises from the (nonunital) convolution operad

$$\operatorname{Conv}\!\left(\operatorname{coAs}\!\{1\},\operatorname{End}(B)\right)\!(r) = \operatorname{Hom}_k\!\left(\operatorname{coAs}(r)[r-1],\operatorname{Hom}(B^{\otimes r},B)\right)\!.$$

Proposition

The convolution operad classifies the operadic formal moduli problem

$$\mathrm{Def}_B:\mathrm{Op}^{\mathrm{aug}}\longrightarrow\mathrm{Spaces};\ \mathcal{N}\longmapsto \left\{\begin{array}{c}\mathrm{RMod}_{\mathcal{N}}^{\otimes}\\ \swarrow\\ \mathbb{A}_{\infty}\xrightarrow[(B,\mu=0)]{} \mathrm{RMod}_{k}^{\otimes}\end{array}\right\}$$