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Goal

Throughout: fix k field of characteristic zero.

Classical principle in deformation theory

Every deformation problem over k is controlled by a dg-Lie algebra g.

Question
Suppose that g admits additional algebraic structure.

How can this additional structure be understood in terms of deformation problems?



Classical example: deforming complex varieties

X - proper smooth variety over C.

Study infinitesimal deformations of X along an Artin local C-algebra A:

X o= X

Spec(C) —— Spec(A)
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Classical example: deforming complex varieties

X - proper smooth variety over C.

Study infinitesimal deformations of X along an Artin local C-algebra A:

X e X
l
Spec(C) —— Spec(A)
Kodaira—Spencer: infinitesimal deformations controlled by tangent bundle Tx.

e HO(X, Tx) < first order automorphisms of X.
e HY(X, Tx) <> deformations of X over C[e]/e>.
e H?(X, Tx) controls obstructions to extending deformations:

)?n : > n+l
L » = ob(X,)=0¢H*(X, Tx).
Y
Spec(k[€]/e") —— Spec(k[e]/e™ 1)



Example: deforming complex varieties
H*(X, Tx) computed by the Dolbeault complex
Q% (Tx) = [2°0(Xe, T}®) 2> Q% (Xe, Tx) 2> Q%2 (Xe, Tx) > ... |.

This is a dg-Lie algebra, from commutator of vector fields and multiplication of forms.



Example: deforming complex varieties
H*(X, Tx) computed by the Dolbeault complex

QO’*(TX) [QOO(X Tlo) QOl(X Tlo) QOZ(X Tx)—>-..]
This is a dg-Lie algebra, from commutator of vector fields and multiplication of forms.
Idea. Q%*(Tx) controls deformations of X via the Maurer—Cartan equation.
More precisely, for Artin algebra A with maximal ideal m4

X Empy ®QO’1(Tx) }

{deformations X over Spec(A)} ~ { i+ 1xx] =0
21X X1 =

)

automorphisms exp(ma ® Q%0(Tx))



Example: deforming complex varieties
H*(X, Tx) computed by the Dolbeault complex
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Higher cohomology groups: control derived deformations of X over dg-Artin algebra A.

Definition

An augmented commutative dg-algebra A over k is called Artin if:
@ H*(A) finite-dimensional and in nonpositive degrees.
o HO(A) — k has nilpotent kernel.



Example: deforming complex varieties
H*(X, Tx) computed by the Dolbeault complex

Q° (Ty) = [ 2”00 T10) 2 % (X, TLO) -2 Q02(Xe, Tx) — )
This is a dg-Lie algebra, from commutator of vector fields and multiplication of forms.
Idea. Q%*(Tx) controls deformations of X via the Maurer—Cartan equation.

Higher cohomology groups: control derived deformations of X over dg-Artin algebra A.

Definition

An augmented commutative dg-algebra A over k is called Artin if:
@ H*(A) finite-dimensional and in nonpositive degrees.
o HO(A) — k has nilpotent kernel.

Negative cohomology groups of a dg-Lie algebra: control homotopies between automorphisms.



Formal moduli problems

Definition
A formal moduli problem is a functor of co-categories

F : Art — Spaces

from Artin commutative dg-algebras to spaces, such that:
o F(k)=~x.
@ Schlessinger condition: for A; - Ag « A, surjective on HO:

F(A X, Ay) —— F(Ar) ><'/7E(A0) F(A2)
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Formal moduli problems
Definition
A formal moduli problem is a functor of co-categories
F : Art — Spaces

from Artin commutative dg-algebras to spaces, such that:
o F(k)=~x.
@ Schlessinger condition: for A; - Ag « A, surjective on HO:

F(Ar X, Ay) —— F(Ar) X’II'(AO) F(A2)
Theorem (Pridham, Lurie)
There is an equivalence of oco-categories between formal moduli problems and dg-Lie algebras

FMP —> Alg, ..



Example: deforming modules

B - associative algebra.
V - (left) B-module (concentrated in cohomological degrees < 0).

Deformations of V' form a formal moduli problem Defy : Art — Spaces

A ® B-modules V4 }

— h - >
Der(A) - MOdA@B ><l\/IOdB {V} { Wlth k ®A VA Vv

This is classified by RHompg(V, V), endowed with the commutator bracket.



Example: deforming modules

B - associative algebra.
V - (left) B-module (concentrated in cohomological degrees < 0).

Deformations of V' form a formal moduli problem Defy : Art — Spaces

A ® B-modules V4 }

— h - >
Der(A) - MOdA@B ><l\/IOdB {V} { Wlth k ®A VA Vv

This is classified by RHompg(V, V), endowed with the commutator bracket.

Explicit model: bar construction
[Hom,(V, V) > Hom(B e V,V) > Hom(Be Be V, V) - ... |

with commutator bracket




Example: deforming associative algebras
B - associative algebra over k.

Deformations of B form a formal moduli problem

A-linear associative algebras Bx
Defg(A) = Alg, Xglgk {8} = { with k ®4 Ba — B }

This is classified by the (reduced) Hochschild cochains

HT(B, B) = [Hom(& B) - Hom(B®2, B) — ]



Example: deforming associative algebras

B - associative algebra over k.

Deformations of B form a formal moduli problem

A-linear associative algebras Bx
Defg(A) = Alg, Xglgk {8} = { with k ®4 Ba — B }

This is classified by the (reduced) Hochschild cochains
HT(B, B) = [Hom(B, B) - Hom(B®2, B) — ]

with Lie structure given by the Gerstenhaber bracket:

[, 8] = aof—Boar, aof = Y ()

Differential: d= [\Tﬁs 7_]



Adding algebraic structure

Question
Let Lie > P be a map of k-linear (dg-) operads.

If g arises from a P-algebra, what structure does the corresponding formal moduli problem
have?

AlgT > 7

forgett
1



Example O: linear deformation problems

€ : Lie - k the augmentation.

€ : Mody — Alg; ;. takes the trivial Lie algebra.
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Example O: linear deformation problems

€ : Lie - k the augmentation.

€ : Mody — Alg; ;. takes the trivial Lie algebra.

Proposition
Lie algebra arises as — corresponding formal moduli problem arises as
g~ triv(V) Art %—‘,Spaces
Perfio. i S - “linear FMP’

(<> reduced excisive)
More precisely, there is a commuting square

Modk — FMPHH

trivl Lrestrict

AlgLie — FMP.



Example 1: deforming modules

V a B-module.

(1) The Lie algebra RHomg(V/, V) arises from an associative algebra.

(2) The corresponding formal moduli problem
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arises from a functor defined on Artin associative algebras A.



Example 1: deforming modules

V a B-module.

(1) The Lie algebra RHomg(V/, V) arises from an associative algebra.

(2) The corresponding formal moduli problem

A® B-modules V4
Defv(A) = { with k ®a Va —> V }

arises from a functor defined on Artin associative algebras A.

In fact: the associative extensions (1) and (2) correspond to each other via

Alg — = > FMPaq

forgetl Lrestrict

Alg)ie —— FMPcom.



Example 2: deforming the trivial algebra

Suppose (B, =0) is a trivial associative algebra.

Then L o o
HH(B,B) = [Hom(B, B) - Hom(B®2, B) —>

together with the operation

aof = Y(+)

form a pre-Lie algebra:
ao(8en)~(asp)or=ac(108)~(aer)op

Question: interpretation in terms of formal moduli problems?
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Fix: P — k an augmented k-linear (symmetric, dg-) operad such that

H*(P)(r)=0 for all + >0 and reN.



Formal moduli problems over operadic algebras
Fix: P - k an augmented k-linear (symmetric, dg-) operad such that

H*(P)(r)=0 for all + >0 and reN.

Definition
A P-algebra A is Artin if:
@ H*(A) is finite-dimensional and vanishes in degrees > 0.
@ Each H/(A) is a nilpotent module over the H°(P)-algebra H°(A):

there is some n such that any n-fold composition of maps
/’L(alv"-aalﬂ_) 3 Hl(A) - H,(A) /“‘LGHO(?)’ aj € HO(A)

vanishes.

Remark. For P = Com the (nonunital) commutative operad:

(nonunital) Artin algebras <> augmentation ideals of augmented unital Artin algebras.



Formal moduli problems over operadic algebras
Fix: P - k an augmented k-linear (symmetric, dg-) operad such that

H*(P)(r)=0 for all + >0 and reN.
Definition
A formal moduli problem is a functor of co-categories
F : Artp - Spaces

from Artin P-algebras to spaces, such that:
o F(0) =~ x.
@ Schlessinger condition: for A; = Ag « A, surjective on H°:

F(A1 x, As) ——= F(A1) <[ 4y F(A2)



Formal moduli problems over operadic algebras

Theorem (Calaque—Campos—N.)

Let P be a Koszul binary quadratic operad in nonpositive cohomological degrees, with Koszul
dual P'. Then there is an equivalence of co-categories

MC : Algy — > FMPy

between P'-algebras and P-algebraic formal moduli problems.

Immediate examples: P P!
Com Lie
As As

Pois, Pois,{1-n} (n>1)
Zinb Leib



First remarks

(1) Naturality in P. For every map P — Q of Koszul binary quadratic operads with dual
Q' - P
Alg(p! — FMP{P

forgetl L restrict along Artqg —Arto

Algy —> FMPq.
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First remarks

(1) Naturality in P. For every map P — Q of Koszul binary quadratic operads with dual

Q' - P
Algp —— FMPy

forget \L l/restrict along Artg—Artyp

Algy — FMPo.

(2) The Maurer—Cartan equation.
Fix g a P'-algebra and A€ Artp. Then MCy(A) can be computed as follows:

o Pick an equivalent P-algebra Ac ~ A with A. a finite-dimensional complex.
o There is a map of operads Lieow — Poo ®1 P

o Consequently, A ® g inherits a Liec-structure.
e The space MCg4(A) can be modeled by the simplicial set of Maurer—Cartan elements

MCy(A) =~ MC(Aw ® g ® Q[A®]).



Example: deforming the trivial algebra

Recall: for (B, =0) trivial associative algebra, HH(B, B) has pre-Lie structure

aofl =Y (%) \\%
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The pre-Lie operad is Koszul, with Koszul dual given by the permutative operad.

A permutative algebra is a (nonunital) associative algebra such that

a(bc) = a(ch).



Example: deforming the trivial algebra

Recall: for (B, =0) trivial associative algebra, HH(B, B) has pre-Lie structure.

Theorem (Chapoton-Livernet)

The pre-Lie operad is Koszul, with Koszul dual given by the permutative operad.

A permutative algebra is a (nonunital) associative algebra such that

a(bc) = a(ch).

Proposition (informal)

The pre-Lie algebra HH(B, B) classifies a permutative formal moduli problem Def.
For a permutative algebra A, the space Defg(A) consists of the following deformations of B:

o a (flat) right A-module B, together with é/é -A— B.

@ an associative (A ) product

Be,B— B-AcB right A-bilinear.
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For P Koszul, there is an equivalence of co-categories MC : Algq —> FMPqp.



About the proof

Theorem

For P Koszul, there is an equivalence of co-categories MC : Algq —> FMPqp.
(1) For (P,P") Koszul dual, there is an adjunction between co-categories
D: Algfp Algsy D"

Here D(A) is the linear dual of the bar construction B(A) = (Pi(A[1]), dpar)-
(2) Define MC : Algg —> FMPy by

MCq(A) = Mapyy, , (D(A),0) AcArtp, geAlgp.

To check: D sends pullbacks of Artin P-algebras to pushouts of P'-algebras.



About the proof

Theorem

For P Koszul, there is an equivalence of co-categories MC : Algq —> FMPqp.

(1) For (P,P") Koszul dual, there is an adjunction between co-categories
D: Algfp Algsy D"

Here D(A) is the linear dual of the bar construction B(A) = (Pi(A[1]), dpar)-
(2) Define MC : Algg —> FMPy by

MCq(A) = Mapyy, , (D(A),0) AcArtp, geAlgp.

To check: D sends pullbacks of Artin P-algebras to pushouts of P'-algebras.
(3) MC is an equivalence as soon as @ is fully faithful on Artin P-algebras.



Further generalizations

(1) For arbitrary augmented operads P — k: use the bar dual operad ©(P) = (BP)".

Then there is an equivalence

if the following holds:

o P(0)=0and P(1) = k-1.

o for each n: H"(BP(r)) vanishes for r > 0.
Example: P=E,.
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Further generalizations

(1) For arbitrary augmented operads P — k: use the bar dual operad ©(P) = (BP)".

Then there is an equivalence

if the following holds:

o P(0)=0and P(1) = k-1.

o for each n: H"(BP(r)) vanishes for r > 0.
Example: P=E,.

(2) There is a more cumbersome condition when P(0) # 0 or P(1) # k.

(3) Relative/coloured case: replace k by dg-algebra or dg-category K over k.

augmented K-> P - K ~ (relative) dual K°? - D(P) - K°P.
Example: the theorem applies to P = SC,,.
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Recall: 1-coloured augmented (symmetric) operads < 1-coloured nonunital operads.

= augmented 1-coloured operads are algebras over a coloured operad Os.
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Operadic deformation problems

Recall: 1-coloured augmented (symmetric) operads < 1-coloured nonunital operads.
= augmented 1-coloured operads are algebras over a coloured operad Os.

Os admits an augmentation
k[X] - Ox - k[X]

where k[X] is the k-linearized category of finite sets and bijections.
Proposition (Van der Laan, Dehling—Vallette)

Oyx is Koszul self-dual relative to k[X].

Theorem

Augmented operads are equivalent to operadic formal moduli problems, i.e. functors

F: {Artin augmented dg — operads} —> Spaces.



Remarks
(1) The operadic formal moduli problem classified by P is given by

MCyp : Arto, — Spaces; Nt+—— Mapopm,g(’D(N), TP).

When P(0) =0 and P(1) = k, this is equivalent to
MCqp(N) = Mapgaus (Liew, P ®1 N).
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Remarks
(1) The operadic formal moduli problem classified by P is given by
MCyp : Arto, — Spaces; N F—= Mapgaus (D(N),P).
When P(0) =0 and P(1) = k, this is equivalent to
MCq(N) = Mapgyeu (Lieo, P @1 N).

(2) Naturality. There are two functors

Opaug — Opnu - AlgpreLie AlgPerm Opnu - Opaug
PP r—=TI1,P(r)* Ar——>Pa(r) =Ar=Pa=k@® P4
A

/
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Remarks
(1) The operadic formal moduli problem classified by P is given by
MCy : Artop, — Spaces; N—— Mapgou (D(N), P).
When P(0) =0 and P(1) = k, this is equivalent to
MCq(N) = Mapgyeu (Lieo, P @1 N).

(2) Naturality. There are two functors

Opaug = Opnu - AlgpreLie AlgPerm Opnu - Opaug

Pr———sP—TI1, P(r)* Ar——>Pa(r) = Ar—=Pa=k® Ps

Restricting operadic FMPs to permutative FMPs fits into

Op™# —~ > FMPo,

Hl lrestrict

AlgpreLie = FMPPerm-



Once more: deforming the trivial algebra
Recall: for (B, =0), HH(B, B) carries a pre-Lie structure.

Observation. This pre-Lie algebra arises from the (nonunital) convolution operad

Conv(coAs{l},End(B))(r) = Homk(coAs(r)[r - 1], Hom(B®", B))



Once more: deforming the trivial algebra

Recall: for (B, =0), HH(B, B) carries a pre-Lie structure.

Observation. This pre-Lie algebra arises from the (nonunital) convolution operad
Conv(coAs{l}, End(B))(r) = Homk(coAs(r)[r - 1], Hom(B®", B))

To describe the associated formal moduli problem, we need the following:

Definition

Given a 1-coloured operad P, let RMod?; be the (big) coloured operad with:
@ colours given by (cofibrant) right P(1)-modules V.
@ morphisms (Vq,...,V,) —» V4 given by

Vl R ® Vr - VO ®g:(1) iP(r) rlght fP(l)®r—|inear.

Note: for the unit operad k, all operations in RModf of arity > 1 are zero!



Once more: deforming the trivial algebra

Recall: for (B, =0), HH(B, B) carries a pre-Lie structure.

Observation. This pre-Lie algebra arises from the (nonunital) convolution operad

Conv(coAs{l}, End(B))(r) = Homk(coAs(r)[r - 1], Hom(B®", B))

Proposition

The convolution operad classifies the operadic formal moduli problem

RMod%

i
Defg : Op™'® — Spaces; N — l

Aw > RMod®
(B,u=0)
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