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Modular operads

We develop a ‘higher genus’ analogue of operads ..in which graphs replace
trees in the definition.

Abstract, Getzler-Kapranov 98

Getzler, E. and Kapranov, M. M.
Modular operads

Compositio Mathematica, 110(1):65-126,
1998.
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Notation

P: groupoid of finite sets and bijections
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Definition 1

A modular operad is a
1. Functor §: P°? — Set
=S

5} @ e d =

IS

2. together with a multiplication o : Sxyiz) X Syrqyy = Sxuy,

- - =

N

<::y’\h”_ <:fi:>
3. and a contraction operation ( : SXH{({iE—?SX. do g

Z,y}

5/45



Definitions and Examples Overview of results and methods Graphs and loops Combinatorics of units

Modular operads

In this talk, definition modular operads will correspond to
compact symmetric multicategories introduced by Joyal and Kock, 2011.

o =
o coloured % -
- N Joyal, A. and Kock, J.,
E Feynman Graphs, and Nerve Theorem for
. . Compact Symmetric Multicategories

o involutive colour set gw (Extended Abstract)

L‘j’ !t Electronic Note in Theoretical Computer

g Science, 270(2):105-113, 2011.

o with multiplicative unit

=R
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Graphs and loops Combinatorics of units

Graphical species (Joyal-Kock, 2011)

[F’O

GS % psh(p)

P - groupoid of finite sets and bijections
is full subcategory.

plus a distinguished object § with
PO(§,8) = {1,7}, 12=1

For each X, and z € X, morphisms
chy, chzyoT:§ — X.

A graphical species S is described by:
P-presheaf (Sx)x, a symmetric sequence
or combinatorial species,

together with a pair (€, w) of
a set € = S5 and involution w = (7).

for all X, for all z € X,
a map S(chg) : Sx — €.

The boundary 9¢ of ¢ € Sx is (S(chy))zex(¢) € €X.
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Graphical species - examples

1. terminal species: § — {x}, X — {x} for all X.

2. directed species:
Di is terminal species on (Di,09;): Di = {in,out}, on; # 1.
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Multiplication.

Glue two elements along dual colours in boundaries:

Partial map

Oif%/Y: SXH{x} X Sy]_[{y} —+ SX]_[y.

commutative, equivariant with respect to P action
5 o —  ——0)
(@) ) -
¢ Ogy Y
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Contraction.

Self-gluing of one element along involutive pair of colours in its boundary:
Partial operation
&y = Eya  Sxiifay) S,

equivariant with respect to P action.

C wc
&) @ ) 3 (@) " N

Cay(@)
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Unit for ¢.

Unit: injection €: € = S5~ Sa:

poe(c)=¢=c¢€(c)op wherever defined,
eow = S(0)oe, where 0 € Aut(2),0 # id

So d(e(c)) = (c,we).
A (€, w)-coloured modular operad (5,9, €)
is equipped with a contracted unit map
0:Cr+— Sy, cr— Ce(o).

Forall ce &
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Category MO of modular operads

Objects: (5,9, ¢, €) with 4 axioms that generalise associativity

Morphisms in GS that preserve (¢, (, €).
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Examples

Oriented surfaces with open - closed boundary

Oriented surfaces with closed boundary
elements of OCyg

elements of S5 __ Y

e — P —
@ O) ;;p; {/B @ Oi@(jp’ units @ D
@ g@@ @ Compact closed categories

e.g. cobordism categories

Undirected virtual tangles

elements of Tag, s =3

Wheeled properads (Directed modular operads)
e.g. directed virtual tangles

PG Fa s

13/45



Definitions and Examples Overview of results and methods Graphs and loops Combinatorics of units

Main theorems

Theorem (Joyal - Kock 2011, R. 2018/20, Hackney-Robertson-Yau 2020)

There is a category GS of coloured collections — called graphical species — and a
monad O on GS whose Eilenberg-Moore category of algebras GS? is canonically
isomorphic to the category MO of modular operads.

Theorem ( Joyal - Kock 2011, R. 2018, Hackney-Robertson-Yau 2020)

There is a full, dense subcategory = of MO whose objects are graphs.
The essential image of the induced fully faithful nerve N : MO — PSh(E)
is characterised by Segal presheaves.
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A little context

- Stated by Joyal and Kock (2011), who consructed the category GS and an
endofunctor on GS whose algebras are modular operads.
However, this functor does not admit a monadic multiplication.

- Proof R. (2018).

- Hackney, Robertson and Yau (2020) have recently proved versions of these

theorems by different methods, with explicit goal of defining co-modular operads.

The point of this talk is not these results, but to use their proof to understand more
about the combinatorics.
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The plan

Theorem (Joyal - Kock 2011, R. 2018/20, Hackney-Robertson-Yau 2020)

There is a category GS of coloured collections — called graphical species — and a
monad O on GS whose Eilenberg-Moore category of algebras GS® is canonically
isomorphic to the category MO of modular operads.

c MO N PSh(E)

f.f.
free@ﬁlforget@ lj*

GS<————— PSh(Gr)

o
o
O 5

=
N

POC

f.f. f.f
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The plan
= N =
= o MO PSh(E)
b.ow free@’ﬂ/forget@ lj*
¢ C C
P o Gr = GS o PSh(Gr)

Theorem ( Joyal - Kock 2011, R. 2018, Hackney-Robertson-Yau 2020)

There is a full, dense subcategory = of MO whose objects are graphs.
The essential image of the induced fully faithful nerve N : MO — PSh(E)
is characterised by Segal presheaves:

For all graphs G

P(G) = lim (¢ pepoyg P(O).
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Abstract nerve theory

_M/@W

dN 7
ph S]U_&/\f"*& :
]V"‘/// —_
= MO PSh(=)
b.oI free@/uforget@ lj*
O C
PecC o Gr¢ = GS o PSh(Gr)

Weber, 2007:

If @ has arities Gr, then N is fully faithful and it's essential image is characterised by
Segal presheaves:
For all graphs G

P(G) = lim (¢ pepoyg P(O).
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Example 1: Classical nerve theorem for categories

Segal condition for categorical nerve theorem:
P: A° — Set is the nerve of a category if and only if for all n > 2,

Pngpl XPO"‘XP()Pl-

n times

Weber picture:

AC Cat N s sSet

]Ibo FCMTJ UCat l]*

EC—S0 A, PSh(£)—————— PSh(Ag).
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Example 2: Dendroidal nerve theorem for operads

>*: Objects: n € N, distinguished edge |
¥*(,n) =2{0,1,...,n}.

Qc » Op N PSh(Q)
1 ]
n*C » Q¢ PSh(2*)—— PSh(£)

P Q°P — Set is the nerve of an operad if and only if,

P(T) = limg pes+y rP(i(1))
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The key results: Distributive law

Theorem (R. 2020)

There are monads T = (T, u*,n") and D = (D, u®,n®) on GS and a distributive law
A: TD = DT such that O = DT on GS.
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The key results: Distributive law

Theorem (R. 2020)

There are monads T = (T, 1", n") and D = (D, u®, n®) on GS and a distributive law

A: TD = DT such that O = DT on GS.

Let GS, be the category of D-algebras.

= MO ——~—— PSh(2)
JWb.o. free]lforget lj*
O
P £f. Gr.© f.f. GS, € £f PSh(Gr.)
b-OT Tb.o. freeﬂrforget
OC C c
F o Gr———— GS—————— PSh(Gr)
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The key results: Lift has arities

2 MO——"—— PSh(E)
j}kb.o. free}lferget l 7
OC C c
Py i Gr. T GS. — PSh(Gr,)
b-OT Tb.o. freeﬂrforget
OC C c
F £.f. Gr £.f. GS T PSh(Gr)

Lemma (R. 2018)

There is a full, dense subcategory Gr, of GS, such that
the induced monad T, on GS,, has arities Gr,.
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Why is this interesting?

(i) Proof of Joyal and Kock's theorem using the originally intended methods:

Weber nerve machinery and, in particular Berger-Mellies-Weber, 2012.

(ii) The proof exhibits the combinatorics of these structures explicitly.
In particular it reveals where we need to take extra care.

(iii) Abstract methods place structures in a wider context.
Results from elsewhere may be generalised to modular operads.

(iv) Proof method suggests ways of building related constructions.

22/45



Definitions and Examples Overview of results and methods Graphs and loops Combinatorics of units

A monad for modular operads?

The configurations of formal composites are now general connected graphs,
more precisely what we call Feynman graphs: they are (non-directed) graphs,
allowed to have multiple edges and loops, as well as open edges.

Introduction, Joyal-Kock 2011
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Graph category Gr - objects

Think of § are graph with two open ends
that can be permuted,
Think of X as corolla.

o — | e 3I—>1<3<

In general G has
- a finite set V of vertices,

- a finite set E of edges
(copies of §)

—

E=0E~ EIE,
G is described by a partial map

E-+V

So G is a diagram

a@v: : H ‘ V.
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Graph category Gr

Morphisms are local isomorphisms — they preserve vertex valency.

- L0

G E«——T S FE : H ! v
| | | "]
f & fe fu fv
g’ E - E < - H p Vv

There are fully faithful dense embeddings

G—Gr(1—,G)

PO = Gr GS.
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A monad for modular operads?

S'is a graphical species. Build a species T °S of formal combinations of elements of S
T°5(8) = S5 = (¢, w).

T °Sx: equivalence classes of graphs G, with G = X, decorated by S:

def |.
S(G) = limeype@oig) Sy

O@ @ Colimit over graph isomorphisms that fix the bijections

X =06.
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A monad for modular operads?

Monadic unit:
Y

Monadic multiplication?

Units for operadic multiplication?

Take colimits of functors
(]PO \L g) — (Gr‘l/ S)a (va) = (gaa)’ag =X

that preserve boundaries and incidence. 27/25
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A monad for modular operads?

Monadic unit: Yi—s - :<< Units for operadic multiplication?

Monadic multiplication?

But...

Take colimits of functors @ \/» L> \\}
T |
(POLG) = (Gri ), (X.f) = (G,0),00 = X o

that preserve boundaries and incidence. 27/25
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Loops?
In fact ...
1—a
5 —) b 1—a
a
' —
2= b
a 4> a colimit
| — 2 |

Can we add this object?

No!
We need

((ec) = ((e(we)), Ve
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If the kids won’t play nicely,

Separate them!
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Non-unital monad

Besides this obstruction,

everything works fine.

Don't allow substitution by §.
Then there’s a well defined monad T = (T, uT,n7)
on GS that governs contraction and multiplication.
Just not multiplicative units.
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Combinatorics of units 1: The monad

If S has a unital multiplication € : € — Ss, then it has distinguished elements S5:
€(c) € S2, forall ce €,
... but also in Sp!

o(c) = Ce(c) = o(we), for ce €.

So, take endofunctor D : GS — GS that adjoins these elements:
- for each ¢ € €, add an extra element ej to Ss,
- for each orbit ¢ of w in €, add an extra element ogr to Sop,
This extends to a monad D = (D, uP,7P) on GS.
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Distributive law

Natural transformation A : TD = DT

If all vertices are decorated by S, do nothing!

@
( @]

If G has vertices decorated by S, delete any vertices decorated by €™

D — @)
& G ( @l
Otherwise b— e — of

— @
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A solution!

Theorem (R. 2020)

There are monads T = (T, u*,n") and D = (D, u®,n®) on GS and a distributive law
A : TD = DT such that O = DT on GS.

Let GS, be the category of D-algebras.
Theorem (R. 2018)

There is a full, dense subcategory Gr, of GS, such that
the induced monad T, on GS., has arities* Gr,.
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A solution!

- N _
‘ ff. MO PSh(Z)
Jwb.o. freeﬂforget J( 7
0 C
Pe ff. Gr.¢ £f. GS. ff. PSh(Gr.)
b‘OT Tb-O. freeTJforget
O
PoC— —— Gr———— GS— PSh(Gr)
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Combinatorics of units 2: Graph morphisms

Endofunctor D : GS — GS that adjoins:
- for each ¢ € €, add an extra element €} to S,

- for each orbit ¢ of w in €, add an extra element oér to Sop,

What do the algebras look like?

Triples (S, €, 0)
o Sis (€,w) - graphical species
o €: & — Y9 is injective unit.
o 0: &€ — Sy factors through €/w.
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Pointed graphical species

GS, & Alg(D)

A pointed graphical species (S, €, 0) is:
a (€, w)-graphical species S,

€: € — So is injective unit

0: € — Sy factors through €/w.
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Pointed graphical species

def

P GS. & PSh(pY)

A ]P’Sf—presheaf S, is:
PO a (€, w)-graphical species S,

with adjoined morphisms:
u: 2 — § such that

- wo chy = idg uo chy = 7, € = Si(u) : € — Sy is injective unit
-Tou=wuoog € PY(2,§),

z:0—§
Z=ToOZz

0= 5(2):€— Sp.
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What should the monad T, on GS, do?

Ignore vertices decorated by units
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What should the monad T, on GS, do?

Contracted units? Identify O-graphs decorated by (contracted) units

How does this work?
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More graph morphisms

PO, Gr, e GS,¢ PSh(Gr,)
boT - - Tb.o. freeT* /Hforgetjr* J
poc_ff Gre—ff GS—— PSh(Gr).

Factorisation on Gr, Right:Morphisms from Gr.
Left: Delete bivalent vertices as long as there is at least one remaining vertex
(preserves graph boundary), and Special morphisms

owu:2—§, °02:0—=8, o k: W =8

38/45



Definitions and Examples Overview of results and methods Graphs and loops Combinatorics of units

The lifted monad T, on D algebras

D If all vertices are decorated by S, do nothing!
(&€

If G has vertices decorated by S, delete any vertices decorated by €™

& &
@ &-@ (@@
Otherwise (co—) ~ € ~ ol v (@
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A monad for modular operads?

Morphisms in left class of Gr,-factorisation preserve boundary except at

z:0—=8§and k: W™ = §.

T.8; = S = (C,w).

T.Sx: equivalence classes of graphs G, with 0G = X, decorated by S:

o

0.

> X

D

f ..
8(9) = lim(ypepoie) Sy

Colimit over graph morphisms in the left class with
fixed bijection

X=0G
except at (8§, ¢).
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Remarks on construction

o

No loop objects added to the construction.

z: 0 — § comes directly from the definition

o

[¢]

K : W — § gives contraction.

Obtain multiplication for monad T, by looking at only nice representatives.

o}
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Weak modular operads: Hackney, Robertson and Yau, 2020

dense

8 MO "W, psh(H)

f.f.
free? /Hforget@ J{j*

GS<—————— PSh(Gr)

Ne—

b.o

01

=
3.

POC

f.f. f.f.

Theorem (Hackney, Robertson, Yau, 2020)

The graphical category U C = is dense in MO.

Essential image of nerve satisfies the strict Segal condition.

There is a model category structure on sSetY” whose fibrant objects are those S
satsifying the weak Segal condition:

for all G,

S(g) ~ |im(cf’b)]p>0¢g S(O)
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Weak modular operads: Corollary and observation

It follows from the proof and Caviglia and Horel, 2016
Corollary (Raynor, 2020)

There is a model category structure on sSet=" whose fibrant objects are those S
satsifying the weak Segal condition:
for all G,

S(Q) ~ |im(c’b)]poig S(@

It remains to compare the versions of weak modular operads so obtained.
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Extending the framework, concluding remarks.

Directions

- Circuit algebras/ modular operads with product and nerve theorem.

- Higher modular operads

Applications
- Extended cobordism categories.
- geometric applications from the cone..

To be continued...
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THANK YOU!
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