Unpacking the combinatorics of modular operads

Sophie Raynor, CoACT, Macquarie University

Operads Pop-Up

11 August 2020

Outline

- 1. Definitions and Examples
- 2. Overview of results and methods
- 3. Graphs and loops
- 4. Combinatorics of units

Modular operads

We develop a 'higher genus' analogue of operads ...in which graphs replace trees in the definition

Abstract, Getzler-Kapranov 98

Getzler, E. and Kapranov, M. M. Modular operads

Compositio Mathematica, 110(1):65–126, 1998.

Notation

P: groupoid of finite sets and bijections

$$\mathbf{n} = \{1, \dots, n\}, \qquad \mathbf{0} = \emptyset.$$

Definition 1

A modular operad is a

1. Functor $S: \mathbb{P}^{op} \to \mathsf{Set}$

2. together with a multiplication $\diamond: S_{X \amalg \{x\}} \times S_{Y \amalg \{y\}} \xrightarrow{\mathcal{S}} S_{X \amalg Y}$,

Modular operads

In this talk, definition modular operads will correspond to compact symmetric multicategories introduced by Joyal and Kock, 2011.

coloured

o involutive colour set

with multiplicative unit

Joval, A. and Kock, J., Fevnman Graphs, and Nerve Theorem for Compact Symmetric Multicategories (Extended Abstract) Electronic Note in Theoretical Computer Science, 270(2):105-113, 2011.

Graphical species (Joyal-Kock, 2011)

$\mathbb{P}^{\circlearrowleft}$	$GS \stackrel{def}{=} PSh(\mathbb{P}^{\circlearrowleft})$
	A graphical species S is described by:
$\ensuremath{\mathbb{P}}$ - groupoid of finite sets and bijections is full subcategory.	\mathbb{P} -presheaf $(S_X)_X$, a symmetric sequence or combinatorial species,
plus a distinguished object \S with $\mathbb{P}^{\circlearrowleft}(\S,\S)=\{1,\tau\}, \tau^2=1$	together with a pair (\mathfrak{C},ω) of a set $\mathfrak{C}=S_\S$ and involution $\omega=S(\tau)$.
For each X , and $x \in X$, morphisms $ch_x, \ ch_x \circ \tau : \S \longrightarrow X$.	for all X , for all $x \in X$, a map $S(ch_x): S_X o \mathfrak{C}$.

The boundary $\partial \phi$ of $\phi \in S_X$ is $(S(ch_x))_{x \in X}(\phi) \in \mathfrak{C}^X$.

Graphical species - examples

- 1. terminal species: $\S \mapsto \{*\}$, $X \mapsto \{*\}$ for all X.
- 2. directed species:

Di is terminal species on $(\mathfrak{Di}, \sigma_{\mathfrak{Di}})$: $\mathfrak{Di} = \{\text{in}, \text{out}\}, \ \sigma_{\mathfrak{Di}} \neq 1$.

3. Feynman diagrams (particle interactions):

Multiplication.

Glue two elements along dual colours in boundaries:

Partial map

$$\diamond^{X,Y}_{x,y}:S_{X\amalg\{x\}}\times S_{Y\amalg\{y\}}\twoheadrightarrow S_{X\amalg Y}.$$

commutative, equivariant with respect to \mathbb{P} action

Contraction.

Self-gluing of one element along involutive pair of colours in its boundary:

Partial operation

$$\xi_{x,y}^X = \xi_{y,x}^X : S_{X\coprod\{x,y\}} \rightarrow S_X,$$

equivariant with respect to \mathbb{P} action.

Unit for ⋄.

Unit: injection $\epsilon : \mathfrak{C} = S_{\S} \rightarrowtail S_{\mathbf{2}}$:

$$\phi \diamond \epsilon(c) = \phi = \epsilon(c) \diamond \phi \quad \text{ wherever defined,}$$

$$\epsilon \circ \omega = S(\sigma) \circ \epsilon, \text{ where } \sigma \in Aut(\mathbf{2}), \sigma \neq id$$

So
$$\partial(\epsilon(c)) = (c, \omega c)$$
.

A (\mathfrak{C},ω) -coloured modular operad $(S,\diamond,\zeta,\epsilon)$ is equipped with a contracted unit map

$$o: \mathfrak{C} \longmapsto S_{\mathbf{0}}, \quad c \longmapsto \zeta \epsilon(c).$$

For all $c \in \mathfrak{C}$

$$o(c) = o(\omega c).$$

Category MO of modular operads

Objects: $(S, \diamond, \zeta, \epsilon)$ with 4 axioms that generalise associativity

Morphisms in GS that preserve $(\diamond, \zeta, \epsilon)$.

Examples

Oriented surfaces with closed boundary

elements of S₈

Undirected virtual tangles

elements of T_{2s} , s=3

Oriented surfaces with open - closed boundary elements of $OC_{\bf a}$

Compact closed categories e.g. cobordism categories

Wheeled properads (Directed modular operads) e.g. directed virtual tangles

Main theorems

Theorem (Joyal - Kock 2011, R. 2018/20, Hackney-Robertson-Yau 2020)

There is a category GS of coloured collections – called graphical species – and a monad $\mathbb O$ on GS whose Eilenberg-Moore category of algebras $\mathsf{GS}^\mathbb O$ is canonically isomorphic to the category MO of modular operads.

Theorem (Joyal - Kock 2011, R. 2018, Hackney-Robertson-Yau 2020)

There is a full, dense subcategory Ξ of MO whose objects are graphs. The essential image of the induced fully faithful nerve $N \colon \mathsf{MO} \to \mathsf{PSh}(\Xi)$ is characterised by Segal presheaves.

A little context

- Stated by Joyal and Kock (2011), who consructed the category GS and an endofunctor on GS whose algebras are modular operads.
 However, this functor does not admit a monadic multiplication.
- Proof R. (2018).
- Hackney, Robertson and Yau (2020) have recently proved versions of these theorems by different methods, with explicit goal of defining ∞-modular operads.

The point of this talk is not these results, but to use their proof to understand more about the combinatorics.

The plan

Theorem (Joyal - Kock 2011, R. 2018/20, Hackney-Robertson-Yau 2020)

There is a category GS of coloured collections – called graphical species – and a monad $\mathbb O$ on GS whose Eilenberg-Moore category of algebras $\mathsf{GS}^{\mathbb O}$ is canonically isomorphic to the category MO of modular operads.

The plan

Theorem (Joyal - Kock 2011, R. 2018, Hackney-Robertson-Yau 2020)

There is a full, dense subcategory Ξ of MO whose objects are graphs. The essential image of the induced fully faithful nerve $N: MO \to PSh(\Xi)$ is characterised by Segal presheaves:

For all graphs G

$$P(\mathcal{G}) \cong \lim_{(C,b) \in \mathbb{P}^{\circlearrowleft} \downarrow \mathcal{G}} P(C).$$

Abstract nerve theory

Weber, 2007:

If \mathbb{O} has arities Gr, then N is fully faithful and it's essential image is characterised by Segal presheaves:

For all graphs ${\cal G}$

$$P(\mathcal{G}) \cong \lim_{(C,b) \in \mathbb{P}^{\circlearrowleft} \downarrow \mathcal{G}} P(C).$$

Example 1: Classical nerve theorem for categories

Segal condition for categorical nerve theorem:

 $P:\Delta^{op}\to\mathsf{Set}$ is the nerve of a category if and only if for all $n\geq 2$,

$$P_n \cong \underbrace{P_1 \times_{P_0} \cdots \times_{P_0} P_1}_{n \text{ times}}.$$

Weber picture:

Example 2: Dendroidal nerve theorem for operads

 Σ^* : Objects: $n \in \mathbb{N}$, distinguished edge \downarrow $\Sigma^*(\downarrow, n) \cong \{0, 1, \dots, n\}$.

 $P:\Omega^{op}\to\mathsf{Set}$ is the nerve of an operad if and only if,

$$P(T) \cong \lim_{(t,f) \in \Sigma^* \downarrow T} P(j(t)).$$

The key results: Distributive law

Theorem (R. 2020)

There are monads $\mathbb{T}=(T,\mu^{\mathbb{T}},\eta^{\mathbb{T}})$ and $\mathbb{D}=(D,\mu^{\mathbb{D}},\eta^{\mathbb{D}})$ on GS and a distributive law $\lambda:TD\Rightarrow DT$ such that $\mathbb{O}=\mathbb{DT}$ on GS.

The key results: Distributive law

Theorem (R. 2020)

There are monads $\mathbb{T}=(T,\mu^{\mathbb{T}},\eta^{\mathbb{T}})$ and $\mathbb{D}=(D,\mu^{\mathbb{D}},\eta^{\mathbb{D}})$ on GS and a distributive law $\lambda:TD\Rightarrow DT$ such that $\mathbb{O}=\mathbb{DT}$ on GS.

Let GS_* be the category of \mathbb{D} -algebras.

The key results: Lift has arities

Lemma (R. 2018)

There is a full, dense subcategory Gr_* of GS_* such that the induced monad \mathbb{T}_* on GS_* , has arities Gr_* .

Why is this interesting?

- (i) Proof of Joyal and Kock's theorem using the originally intended methods: Weber nerve machinery and, in particular Berger-Mellies-Weber, 2012.
- (ii) The proof exhibits the combinatorics of these structures explicitly. In particular it reveals where we need to take extra care.
- (iii) Abstract methods place structures in a wider context.

 Results from elsewhere may be generalised to modular operads.
- (iv) Proof method suggests ways of building related constructions.

The configurations of formal composites are now general connected graphs, more precisely what we call Feynman graphs: they are (non-directed) graphs, allowed to have multiple edges and loops, as well as open edges.

Introduction, Joyal-Kock 2011

Graph category Gr - objects

Think of \S are graph with two open ends that can be permuted, Think of X as corolla.

$$\S \longmapsto {1 \atop 1} \qquad \{x\} \longmapsto {x \atop x^{\dagger}} \qquad \mathbf{3} \longmapsto \boxed{1}$$

In general ${\cal G}$ has

- a finite set V of vertices,
- a finite set \tilde{E} of edges (copies of \S)

 ${\cal G}$ is described by a partial map

$$E \rightarrow V$$

So \mathcal{G} is a diagram

$$\tau \longrightarrow E \longleftarrow \stackrel{s}{\longrightarrow} H \longrightarrow V.$$

Graph category Gr

Morphisms are local isomorphisms – they preserve vertex valency.

There are fully faithful dense embeddings

$$\mathbb{P}^{\circlearrowleft} \xrightarrow{\iota} \mathsf{Gr} \xrightarrow{\mathcal{G} \mapsto \mathsf{Gr}(\iota - \mathcal{G})} \mathsf{GS}$$

S is a graphical species. Build a species $T \circ S$ of formal combinations of elements of S:

$$T \circ S(\S) = S_{\S} = (\mathfrak{C}, \omega).$$

 $T \circ S_X$: equivalence classes of graphs \mathcal{G} , with $\partial \mathcal{G} \cong X$, decorated by S:

$$S(\mathcal{G}) \stackrel{\mathsf{def}}{=} \lim_{(Y,b) \in (\mathbb{P}^{\circlearrowleft} \downarrow \mathcal{G})} S_Y$$

Colimit over graph isomorphisms that fix the bijections

$$X \cong \partial \mathcal{G}$$
.

Monadic unit:

Monadic multiplication?

Take colimits of functors

$$(\mathbb{P}^{\circlearrowleft}\downarrow\mathcal{G})\rightarrow(\mathsf{Gr}\downarrow\mathit{S}),\ (\mathit{X},\mathit{f})\mapsto(\mathcal{G},\alpha),\partial\mathcal{G}=\mathit{X}$$

that preserve boundaries and incidence.

Units for operadic multiplication?

Monadic unit:

Monadic multiplication?

Take colimits of functors

$$(\mathbb{P}^{\circlearrowleft} \downarrow \mathcal{G}) \to (\mathsf{Gr} \downarrow S), \ (X, f) \mapsto (\mathcal{G}, \alpha), \partial \mathcal{G} = X$$

that preserve boundaries and incidence.

Units for operadic multiplication?

Loops?

But we still need to take a colimit.

$$\begin{bmatrix} a \\ b \end{bmatrix} \xrightarrow{\text{id}} \begin{bmatrix} a \\ b \end{bmatrix}$$

Can we add this object?

No!

We need

$$\zeta(\epsilon c) = \zeta(\epsilon(\omega c)), \forall c.$$

If the kids won't play nicely,

Separate them!

Non-unital monad

Besides this obstruction,

everything works fine.

Don't allow substitution by §.

Then there's a well defined monad $\mathbb{T}=(T,\mu^{\mathbb{T}},\eta^{\mathbb{T}})$ on GS that governs contraction and multiplication. Just not multiplicative units.

Combinatorics of units 1: The monad

If S has a unital multiplication $\epsilon: \mathfrak{C} \to S_2$, then it has distinguished elements S_2 :

$$\epsilon(c) \in S_2$$
, for all $c \in \mathfrak{C}$,

... but also in $S_0!$

$$o(c) = \zeta \epsilon(c) = o(\omega c)$$
, for $c \in \mathfrak{C}$.

So, take endofunctor $D: \mathsf{GS} \to \mathsf{GS}$ that adjoins these elements:

- for each $c \in \mathfrak{C}$, add an extra element ϵ_c^+ to S_2 ,
- for each orbit \tilde{c} of ω in \mathfrak{C} , add an extra element $o_{\tilde{c}}^+$ to S_0 ,

This extends to a monad $\mathbb{D} = (D, \mu^{\mathbb{D}}, \eta^{\mathbb{D}})$ on GS.

Distributive law

Natural transformation $\lambda: TD \Rightarrow DT$

If all vertices are decorated by S, do nothing!

If \mathcal{G} has vertices decorated by S, delete any vertices decorated by ϵ^+

A solution!

Theorem (R. 2020)

There are monads $\mathbb{T}=(T,\mu^{\mathbb{T}},\eta^{\mathbb{T}})$ and $\mathbb{D}=(D,\mu^{\mathbb{D}},\eta^{\mathbb{D}})$ on GS and a distributive law $\lambda:TD\Rightarrow DT$ such that $\mathbb{O}=\mathbb{DT}$ on GS.

Let GS_* be the category of \mathbb{D} -algebras.

Theorem (R. 2018)

There is a full, dense subcategory Gr_* of GS_* such that the induced monad \mathbb{T}_* on GS_* , has arities* Gr_* .

A solution!

Combinatorics of units 2: Graph morphisms

Endofunctor $D: \mathsf{GS} \to \mathsf{GS}$ that adjoins:

- for each $c \in \mathfrak{C}$, add an extra element ϵ_c^+ to S_2 ,
- for each orbit \tilde{c} of ω in \mathfrak{C} , add an extra element $o_{\tilde{c}}^+$ to $S_{\mathbf{0}}$,

What do the algebras look like?

Triples (S, ϵ, o)

- \circ S is (\mathfrak{C}, ω) graphical species
- $\bullet \ \epsilon : \mathfrak{C} \to S_2$ is injective unit.
- $o: \mathfrak{C} \to S_0$ factors through \mathfrak{C}/ω .

Pointed graphical species

$GS_* \stackrel{def}{=} Alg(\mathbb{D})$
A pointed graphical species (S,ϵ,o) is: a (\mathfrak{C},ω) -graphical species S ,
$\epsilon: \mathfrak{C} o S_{2}$ is injective unit
$o: \mathfrak{C} ightarrow S_{f 0}$ factors through \mathfrak{C}/ω .

Pointed graphical species

$\mathbb{P}_*^{\circlearrowleft}$	$GS_* \stackrel{def}{=} PSh(\mathbb{P}_*^{\circlearrowleft})$
$\mathbb{P}^\circlearrowleft$	A $\mathbb{P}_*^{\circlearrowleft}$ -presheaf S_* is: a (\mathfrak{C},ω) -graphical species S ,
with adjoined morphisms: $ \begin{split} u: 2 &\to \S \text{ such that} \\ & - u \circ ch_1 = id_\S \qquad u \circ ch_2 = \tau, \\ & - \tau \circ u = u \circ \sigma_{2} \in \mathbb{P}^{\circlearrowleft}(2,\S), \end{split} $	$\epsilon = S_*(u): {\mathfrak C} o S_{f 2}$ is injective unit
$z: 0 \to \S$ $z = \tau \circ z$	$o = S_*(z) : \mathfrak{C} \to S_0.$

What should the monad \mathbb{T}_* on GS_* do?

Ignore vertices decorated by units

Units?

What should the monad \mathbb{T}_* on GS_* do?

Contracted units? Identify **0**-graphs decorated by (contracted) units

How does this work?

More graph morphisms

Factorisation on Gr. Right: Morphisms from Gr.

Left: Delete bivalent vertices as long as there is at least one remaining vertex (preserves graph boundary), and Special morphisms

$$o u: \mathbf{2} \to \S$$
.

$$\circ z: \mathbf{0} \to \S$$

$$\circ \ \kappa: \mathcal{W} \to \S.$$

The lifted monad \mathbb{T}_* on \mathbb{D} algebras

If all vertices are decorated by S, do nothing!

If \mathcal{G} has vertices decorated by S, delete any vertices decorated by ϵ^+

Otherwise

A monad for modular operads?

Morphisms in left class of Gr_* -factorisation preserve boundary except at $z: \mathbf{0} \to \S$ and $\kappa: \mathcal{W}^m \to \S$.

$$T_*S_\S = S_\S = (\mathfrak{C}, \omega).$$

 T_*S_X : equivalence classes of graphs \mathcal{G} , with $\partial \mathcal{G} \cong X$, decorated by S:

$$S(\mathcal{G}) \stackrel{\mathsf{def}}{=} \lim_{(Y,b) \in (\mathbb{P}^{\circlearrowleft} \cup \mathcal{G})} S_Y$$

Colimit over graph morphisms in the left class with fixed bijection

$$X \cong \partial \mathcal{G}$$

except at (\S, c) .

Remarks on construction

- No loop objects added to the construction.
- $z: \mathbf{0} \to \S$ comes directly from the definition
- $\kappa: \mathcal{W} \to \S$ gives contraction.
- \circ Obtain multiplication for monad \mathbb{T}_* by looking at only nice representatives.

Weak modular operads: Hackney, Robertson and Yau, 2020

Theorem (Hackney, Robertson, Yau, 2020)

The graphical category $U \subset \Xi$ is dense in MO.

Essential image of nerve satisfies the strict Segal condition.

There is a model category structure on $sSet^{\mathbf{U}^{\tilde{o}p}}$ whose fibrant objects are those S satsifying the weak Segal condition:

for all \mathcal{G} ,

$$S(\mathcal{G}) \simeq \lim_{(C,b)\mathbb{P}^{\circlearrowleft} \downarrow \mathcal{G}} S(C).$$

Weak modular operads: Corollary and observation

It follows from the proof and Caviglia and Horel, 2016

Corollary (Raynor, 2020)

There is a model category structure on $Set^{\Xi^{op}}$ whose fibrant objects are those S satsifying the weak Segal condition: for all G,

$$S(\mathcal{G}) \simeq \lim_{(C,b)\mathbb{P}^{\circlearrowleft} \downarrow \mathcal{G}} S(C)$$

It remains to compare the versions of weak modular operads so obtained.

Extending the framework, concluding remarks.

Directions

- Circuit algebras/ modular operads with product and nerve theorem.
- Higher modular operads

Applications

- Extended cobordism categories.
- geometric applications from the cone..

To be continued...

Definitions and Examples Overview of results and methods Graphs and loops Combinatorics of units

THANK YOU!